

LOWER PLATTE SOUTH natural resources district

Phase II Nitrate Verification Study For Raymond Community Water System Protection Area

Raymond, Nebraska

Prepared for

Lower Platte South Natural Resources District PO Box 83581 3125 Portia Street Lincoln, Nebraska 68521

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 221 Sun Valley Blvd., Suite D Lincoln, Nebraska 68528 (402) 476-3766

> March 2022 Version: DRAFT EA Project No. 6333202

This page intentionally left blank

Phase II Nitrate Verification Study For Raymond Community Water System Protection Area

Raymond, Nebraska

Prepared for

Lower Platte South Natural Resources District PO Box 83581 3125 Portia Street Lincoln, Nebraska 68521

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 221 Sun Valley Blvd., Suite D Lincoln, Nebraska 68528 (402) 476-3766

Dale Schlautman Vice President Date

March 2022 Version: DRAFT EA Project No. 6333202 This page intentionally left blank

CONTENTS

Page

LIST (OF FIG	URESiii
LIST (OF TAE	iv
LIST (OF ACE	RONYMS AND ABBREVIATIONS v
EXEC	UTIVE	SUMMARY 1
1.	INTRO	DDUCTION
	1.1	LPSNRD GROUNDWATER MANAGEMENT 1-1
	1.2	RAYMOND STUDY AREA1-2
	1.3	PURPOSE OF STUDY1-2
2.	BACK	GROUND INFORMATION
	2.1	KEY TERMS2-1
	2.2	NITRATE-NITROGEN (NO ₃ -N)
		2.2.1 Background Levels and Leaching
		2.2.2 Point and Non-Point Sources
	2.3	TIER 1 INVESTIGATIVE REPORT IN RAYMOND
3.	PHYS	ICAL SETTING
	3.1	LAND USE
	3.2	REGIONAL HYDROGEOLOGY
	3.3	SITE HYDROGEOLOGY
	3.4	SURFACE DRAINAGE
	3.5	POINT SOURCE INVESTIGATION
	3.6	REGISTERED WELLS
		3.6.1 Public Water Supply Wells
	3.7	WELLHEAD ANALYTICAL ELEMENT MODEL REVIEW
4.	METH	IODS OF INVESTIGATION
	4.1	SHALLOW SAMPLING
	4.2	DIRECT PUSH SAMPLING
		4.2.1 Deep Sampling
		4.2.2 Groundwater Sampling
	4.3	MONITORING WELLS
		4.3.1 Monitoring Well Drilling
		4.3.2 Monitoring Well Construction and Development
		4.3.3 Monitoring Well Groundwater Sampling
	4.4	SAMPLE IDENTIFICATION
	4.5	QA/QC PROCEDURES
	4.6	UTILITY CLEARANCES
	4.7	SURVEY
		4.7.1 Monitoring Well
		4.7.2 Deep Vadose Zone Sampling and Shallow Vadose Zone Sampling
		Locations
		4.7.3 Irrigation and Domestic Wells
5.	RESU	LTS

5.1	GEOL	LOGIC PROFILE	
5.2	GROU	UNDWATER LEVELS	
	5.2.1	Groundwater Levels During Field Investigation	5-7
	5.2.2	Groundwater Flow Direction	5-11
5.3	NITR.	ATE LOADING	
	5.3.1	Shallow Soil Samples	5-15
	5.3.2	Deep Soil Samples	5-15
	5.3.3	Direct Push Groundwater Samples	
	5.3.4	Evaluation	5-21
5.4	QA/Q	C SAMPLES	
5.5	GROU	UNDWATER MONITORING WELL RESULTS	
	5.5.1	Monitoring Well Groundwater Samples	5-23
5.6	NITR	ATE-N AND LAND USE	
	5.6.1	Dryland Corn/Soybeans	5-24
	5.6.2	Range Pasture and Grass	
	5.6.3	Nitrate Variability Within the Same Field	5-25
	5.6.4	Average Nitrate by Land Use	
CONC		DNS	
6.1	LEAC	CHABLE NITRATE-N IN SOIL	6-1
	6.1.1	Shallow Soil Samples	6-1
	6.1.2	Deep Soil Samples	6-1
6.2	NITR	ATE-N IN GROUNDWATER	
6.3	NITR	ATE LOADING BY LAND USE	6-2
6.4	SOUR	RCES OF NITRATE-N	
6.5	DATA	A GAP	6-3
6.6	FUTU	JRE LEACHING POTENTIAL	
REFE	RENCE	ES	7-1

APPENDIX A: V	WhAEM Model	Review and	Data Sheets
---------------	-------------	------------	-------------

- APPENDIX B: Monitoring Well Construction Forms and Boring Logs
- APPENDIX C: Laboratory Results

6.

7.

- APPENDIX D: Shallow Soil Sampling Results Tables
- APPENDIX E: Deep Soil Sampling Results Tables

LIST OF FIGURES

Number	Title	<u>Page</u>
Figure 1.	Site Location Map	1-3
Figure 2.	Vadose Zone Illustration	2-1
Figure 3.	Root Zone Illustration	2-2
Figure 4.	Raymond Land Uses	3-3
Figure 5.	Registered Well Locations	3-9
Figure 6.	Sampling Locations	5-3
Figure 7.	Geologic Profile	5-5
Figure 8.	Groundwater Elevations	5-9
Figure 9.	Groundwater Flow Direction	5-13
Figure 10.	Soil Sampling Results	5-16
Figure 11.	Groundwater Sampling Results	5-19
Figure 12.	Variability of Nitrate in Deep Profiles for Same Field	5-26
Figure 13.	Average Nitrate-N in Soil Samples	

LIST OF TABLES

<u>Number</u>	<u>Title</u> <u>Page</u>
Table 1.	Raymond Study Area Land Use Categories
Table 2.	Registered Wells Within and Surrounding the Raymond CWSPA3-6
Table 3.	Municipal Well Groundwater Nitrate-N Sample
Table 4.	Raymond Study Area - Groundwater Level Measurements
Table 5.	Groundwater Flow Direction Measurements
Table 6.	Summary of Nitrate Results for Shallow Borings
Table 7.	Summary of Nitrate Results for Deep Soil Borings with Land Use Categories 5-16
Table 8.	Raymond CWSPA - Direct Push Groundwater Sample Results
Table 9.	QA/QC Sample Percent Differences
Table 10.	Monitoring Well Groundwater Results
Table 11.	Nitrate-N Loading in Soils by Land Use5-24

LIST OF ACRONYMS AND ABBREVIATIONS

AMSL	above mean sea level
bgs	below ground surface
CWSPA	Community Water System Protection Area
DS	deep sample
EA	EA Engineering, Science, and Technology, Inc., PBC
EPA	United States Environmental Protection Agency
ft	foot (feet)
H_2SO_4	sulfuric acid
lb/ac-ft	pounds per acre-foot (pounds per one acre of surface area to a depth of one foot)
LPSNRD	Lower Platte South Natural Resources District
MCL	Maximum Contaminant Level
mL	milliliter
MW	monitoring well
Ν	Nitrogen
NAD83	1983 North American Datum
NAVD88	1988 North American Vertical Datum
NDEE	Nebraska Department of Environment and Energy (formerly NDEQ)
NDEQ	Nebraska Department of Environmental Quality
NDNR	Nebraska Department of Natural Resources
NDHHS	Nebraska Department of Health and Human Services
ppm	parts per million
PVC	polyvinyl chloride
QA	quality assurance
QC	quality control
RTK GPS	Real-time kinematic global positioning system
SDWA	Safe Drinking Water Act
SS	shallow sample
USDA	United States Department of Agriculture
WhAEM	Wellhead Analytic Element Model
WHPP	Wellhead Protection Programs

This page intentionally left blank

EXECUTIVE SUMMARY

Background and Purpose

This report has been prepared by EA Engineering, Science, and Technology, Inc. (EA) to document the results of the nitrate-N verification study for the Raymond, Nebraska Community Water System Protection Area (CWSPA), which is supplied by groundwater from three public water supply wells. The purpose of this study was to identify the source and extent of the reported nitrate-N within the Raymond CWSPA. The Lower Platte South Natural Resources District (LPSNRD) requires that the source of nitrate-N be verified as non-point sources before a Phase II nitrogen management area is declared.

Field Activities and Results

Field activities included installation of three monitoring wells; collection of 149 shallow soil samples at 6 sites; and collection of 101 deep soil samples at 12 sites. Sampling activities were completed from 16 November 2020 through 13 December 2020 and monitoring well installation was completed from 26 October 2021 through 1 December 2021.

The deep soil sampling and groundwater results suggest that elevated nitrate-N levels exist in the soil profiles and in the groundwater.

Sources of Nitrate

The results generally indicate that the source of nitrate-N in groundwater across the CWSPA is likely due to application of commercial fertilizer or manure on cropland. The soil sampling results indicate that dryland corn and soybean sites had nitrate-N values that typically exceeded background nitrate-N concentrations and appear to be a non-point source of nitrate loading. The vadose zone soil nitrate-N levels were found to be generally close to background levels through most of the profile for sites where the land use was range, pasture, or grass. No evidence of point sources such as industrial processes, leakage from an industrial or municipal wastewater site, or large spills were identified within the Raymond CWSPA. One area that is inconclusive is the area surrounding Site 010. Additional investigation would be needed to determine if the source of nitrate-N is from a point source or from non-point source.

Future leaching of nitrate-N through the vadose zone is anticipated. Changes to management practices have potential to reduce the addition of future nitrate loading to the vadose zone. It is recommended that the future sampling results from the monitoring wells be evaluated for trends.

Data Gaps

A data gap was identified regarding the area east of the Village of Raymond directly southwest of the municipal wells. A point source cannot be ruled out for the high levels of nitrate-N in groundwater at one site southeast of the intersection of NW 40th St and Raymond Road. Additional investigation would be needed to determine of the source of nitrate-N is from a point

source or from non-point source. The sparsity of data in this area renders the results inconclusive. This data gap was identified after field activities were complete. It was decided to document the findings of the current field activities and allow the LPSNRD to review the data and decide if additional investigation was desired.

1. INTRODUCTION

This report has been prepared by EA Engineering, Science & Technology, Inc., PBC (EA) for work related to a nitrate-Nitrogen (N) study regarding the Raymond community water system located within the Lower Platte South Natural Resources District (LPSNRD). EA has prepared this report as authorized through a contract with the LPSNRD.

The community of Raymond, Nebraska is located in northwestern Lancaster County, approximately 14 miles northwest of Lincoln, Nebraska (Figure 1). The Raymond community water system was selected by the LPSNRD for a nitrate-N study based off the guidelines within the Groundwater Management Plan (LPSNRD 2020). The LPSNRD initiated the nitrate-N verification study to assist in determining the source and extent of the reported nitrate-N within this area.

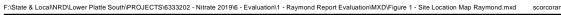
1.1 LPSNRD GROUNDWATER MANAGEMENT

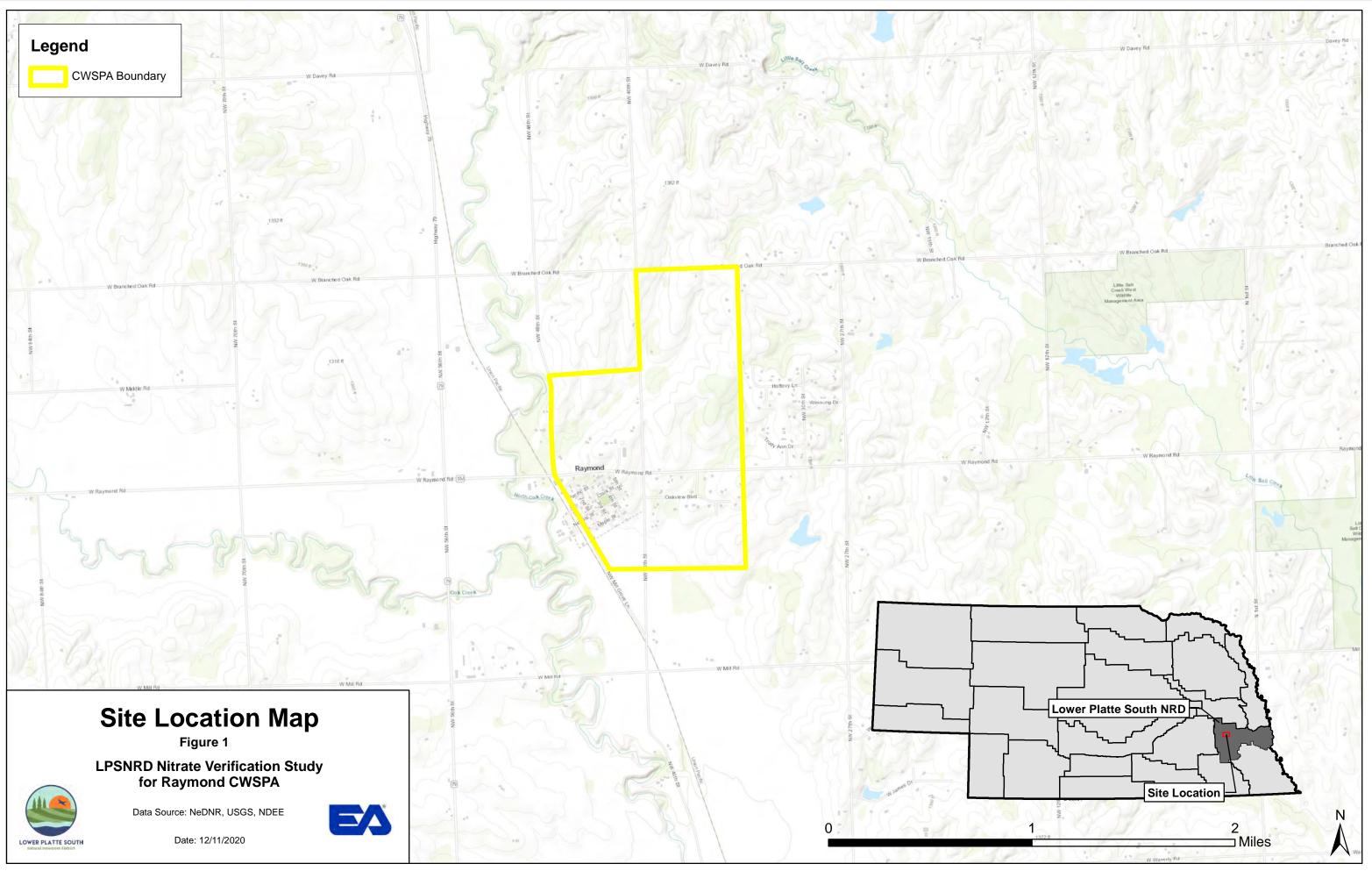
The LPSNRD's philosophy regarding groundwater problems is that prevention is less costly than correction. Therefore, the LPSNRD has adopted programs that emphasize proactive protection of groundwater, rather than a reactive, corrective approach.

In 1994, the Nebraska Legislature directed the Natural Resources Districts to: 1) identify possible levels and sources of groundwater contamination within the area, 2) develop groundwater quality goals, 3) create long-term solutions necessary to prevent the levels of groundwater contaminants from becoming too high, 4) reduce high levels of contaminants sufficiently to eliminate health hazards, and 5) implement practices to stabilize, reduce, and prevent the occurrence, increase, or spread of groundwater contamination. The LPSNRD prepared its Ground Water Management Plan in 1995 to address these issues and has performed annual review of the Ground Water Management Plan since then. Along with the review, the groundwater rules and regulations have been updated several times, with the most recent update on 15 January 2020 (LPSNRD 2020). These documents set out a proactive plan that establishes three separate phases, or levels, for managing groundwater quality. By default, the entire LPSNRD is currently in a Phase I area. The LPSNRD has already identified areas that are Phase II and Phase III based on previous Nitrate Verification Studies. Each successive phase progresses from the previous actions and implements stepped-up measures for dealing with changes in groundwater quality. In Phase II areas, additional education and water quality cost-share programs are implemented. In Phase III areas, additional monitoring and fertilizer/pesticide application requirements are implemented.

The Ground Water Management Plan defines multiple designated areas of management within the LPSNRD based on groundwater availability and uses. Community Water System Protection Areas (CWSPAs) is one of the designations for these areas of management. The LPSNRD has 31 CWSPAs corresponding to the 31 Wellhead Protection Areas (which are designated by the Nebraska Department of Environment and Energy [NDEE]) within its boundaries. A map of the CWSPA for Raymond is shown in Figure 1. Each CWSPA has its own network of groundwater wells that are sampled by the LPSNRD and is managed separately based on the levels of contaminants found in those wells. For a CWSPA to enter a higher phase, two criteria must be met. First, the monitoring results must exceed a phase 'trigger'. The triggers are based on whether a certain percentage of the wells are at or exceed a certain percentage of the Maximum Contaminant Level (MCL) of the contaminant. The groundwater nitrate-N MCL is determined by the US Environmental Protection Agency (EPA) and it is designated at 10 mg/L for adverse health effects in vulnerable populations. For a Phase II, 50% of the wells in the monitoring network must be at/or above 50% of the MCL. For a Phase III, 80% of the wells in the monitoring network must be at/or above 80% of the MCL. Second, the contamination must be verified as non-point source pollution through a verification study. If both conditions are met, the Board of Directors of the LPSNRD can designate the area as Phase II or III for the contaminant.

1.2 RAYMOND STUDY AREA

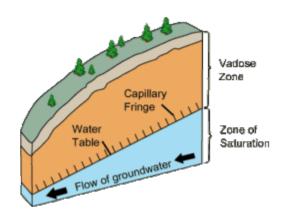

The study area includes the entire Raymond CWSPA, which encompasses approximately 700 acres and includes the village of Raymond, and areas north, east, and south of Raymond (Figure 1). The CWSPA boundary extends north of Raymond ¹/₂ a mile, to the east of Raymond about ¹/₂ a mile, and to the northeast approximately 1¹/₄ miles. The boundary extends ¹/₄ mile south of Raymond. A Union Pacific railroad runs from the northwest to the southeast located to the west of the CWSPA.


1.3 PURPOSE OF STUDY

Currently the Raymond CWSPA is within a Phase I area. Previous sampling results from the three Raymond public water supply wells located to the east of Raymond have indicated that nitrate-N levels in two of the three wells have exceeded the 50% of the MCL, with all three wells reporting around 4-5 mg/L nitrate-N since the initial sampling in 2003, and the third well indicating an upward trend. Throughout this report, these wells are labelled as PWS-1, PWS-2, and PWS-3 rather than their well registration numbers. Based on the records through 2018, the highest nitrate-N concentration reported was 6.4 mg/L in PWS-2 (G-084064) in 2008. Data for the public wells is further described in section 3.6.1.

These wells exhibit consistently higher nitrate concentrations suggesting that the Phase II trigger requirements may be met. In accordance with the Ground Water Management Plan, these sampling results trigger the need for a verification study to determine the source of nitrate-N and whether it is warranted to change the entire CWSPA from a Phase I to a Phase II Ground Water Management Area.

The purpose of this study is to identify the source and extent of the reported nitrate-N within the Raymond CWSPA. The report presents the findings of the study and documents the procedures used in the field effort. Results and conclusions are anticipated to provide information to allow the LPSNRD Board of Directors to determine if the Raymond CWSPA should be designated as a Phase II area.


This page is intentionally left blank.

2. BACKGROUND INFORMATION

2.1 KEY TERMS

<u>Vadose Zone</u> – The vadose zone is the area between the land surface and the top of the regional water table, as illustrated in Figure 2 (courtesy of USGS). For this study, the portion of the vadose zone within 15 feet (ft) of the ground surface is called the shallow vadose zone. The portion of the vadose zone below 15 ft to the water table is called the deep vadose zone. Samples for this study were collected from both the shallow and deep vadose zones.

Figure 2. Vadose Zone Illustration

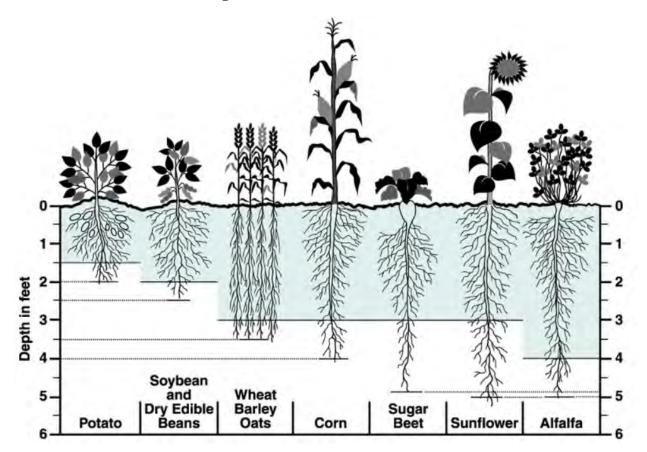


Figure 3. Root Zone Illustration

Nitrogen (N) is an essential plant nutrient and is naturally produced by plants and animals. Additional sources of nitrogen in the environment include livestock operations, septic and waste systems, application of fertilizer for lawn and garden care, and for crop production. There are several forms of nitrogen, including nitrate (NO_3^-), nitrite (NO_2^-), and ammonia (NH_3). Nitrate is the form of nitrogen most easily taken up by plants and is the most common form found in the environment. Laboratory results as used in this study report the pounds per acre-foot (lb/ac-ft) of nitrogen in the form of nitrate-N (NO_3 -N).

2.2.1 Background Levels and Leaching

Nitrate is present in every natural system at different levels. These naturally occurring nitrogen levels are commonly referred to as background levels. In natural ecosystems, nitrate-N is cycled between the atmosphere and shallow soils, and only small amounts of nitrate are leached below the root zone of plants. Soil below the root zone typically has background nitrate-N levels below 2 parts per million (ppm), which is equivalent to approximately 8 lb/ac-ft of nitrogen in the soil (Exner et.al., 2014). Therefore, individual sample results above 8 lb/ac-ft were considered elevated for this investigation. When more nitrogen is added than an ecosystem can uptake,

leaching of nitrate-N below the root zone can occur. In many places across Nebraska groundwater quality has been impacted by increasing nitrate-N concentrations (Spalding & Exner 1993).

When nitrate-N leaching occurs within the capture zone of a well field, the nitrate-N is transported with groundwater flow through the subsurface to the wells resulting in contamination to drinking water supplies. Since nitrate-N in drinking water can cause adverse health effects, State and Federal regulations established an MCL of 10 ppm for nitrate-N in drinking water.

In addition to the above State and Federal regulations, the LPSNRD has established 'trigger' levels for the management of non-point source nitrate-N. The Phase II and Phase III triggers are described in Section 1.1.

2.2.2 Point and Non-Point Sources

Nitrate-N in groundwater can originate from both point source and non-point sources. Point sources include those releases of nitrate-N that can be traced back to a particular point or spot such as contamination through a pipe or drain, industrial processes, sewage disposal systems, leakage from an industrial or municipal wastewater site, or a spill from a trailer of chemicals. Non-point sources of nitrate-N include chemical and manure fertilizer runoff during rainfall events and leaching beneath cropland, parks, lawns, and gardens.

2.3 TIER 1 INVESTIGATIVE REPORT IN RAYMOND

A Tier 1 Investigative Report was prepared in 2009 near the Raymond Patrol Station (5th & Pacific Street) in response to a petroleum spill in 1988 (Array, 2009). The 650-gallon underground fuel tank was removed and at the time it was estimated that the tank had not been used since 1970. In 2002, construction occurred on the property and during demolition, a 12 inch well was discovered with the presence of free product. The well was 62 ft deep and free product was detected at 38 ft below surface.

Seven monitoring wells were installed near the subject site in 2009 to determine groundwater flow, the amount, and concentration of free product, benzene, toluene, ethylbenzene, total xylenes, MTBE, n-hexane, and total extractable hydrocarbons as diesel fuel. Groundwater flow direction was determined to be due west. One monitoring well (G-153639B) was installed where the former underground storage tank was located. Six other wells were installed surrounding the spill location. In monitoring well G-153639B, 15.15 ft of free product was measured. In the remaining monitoring wells, no free product was detected. It should be noted that the subject site is upgradient of the three public water supply wells and therefore should not be anticipated to impact the municipal water supply.

In 2018, a groundwater sampling report was submitted to NDEE. All wells were sampled for present free product. At the time of measurement, monitoring well G-153639Bmeasured 24.62 ft of free product and was not sampled (Array, 2018). The 6 remaining sampled monitoring wells were non-detect. Based on the groundwater sampling report, the free product appears to be

contained in one general location. The report updated the groundwater gradient calculation, which slightly changed the groundwater flow direction; however, flow direction was still generally to the west.

The most recent work conducted at the site included groundwater extraction in 2019. A total of 1,608 gallons of groundwater and free product were recovered over the period from March 2019 to September 2019. Product thickness in March initially measured at 26.33 ft and by December 2019, product thickness was measured at 2.16 ft.

Proposed future study investigations include 12 soil borings each at a depth of 70 ft and a free product delineation to characterize the plume localized. This investigation is likely ongoing at the time of this report.

3. PHYSICAL SETTING

3.1 LAND USE

The Raymond CWSPA encompasses approximately 700 acres. A breakdown of land use within the CWSPA is provided in Table 1. The most predominant land use type is Range, Pasture, and Grass which accounts for 73% of land use. Remaining land use within the CWSPA is urban land, riparian forest and woodlands, dryland soybeans, dryland corn, and wetlands.

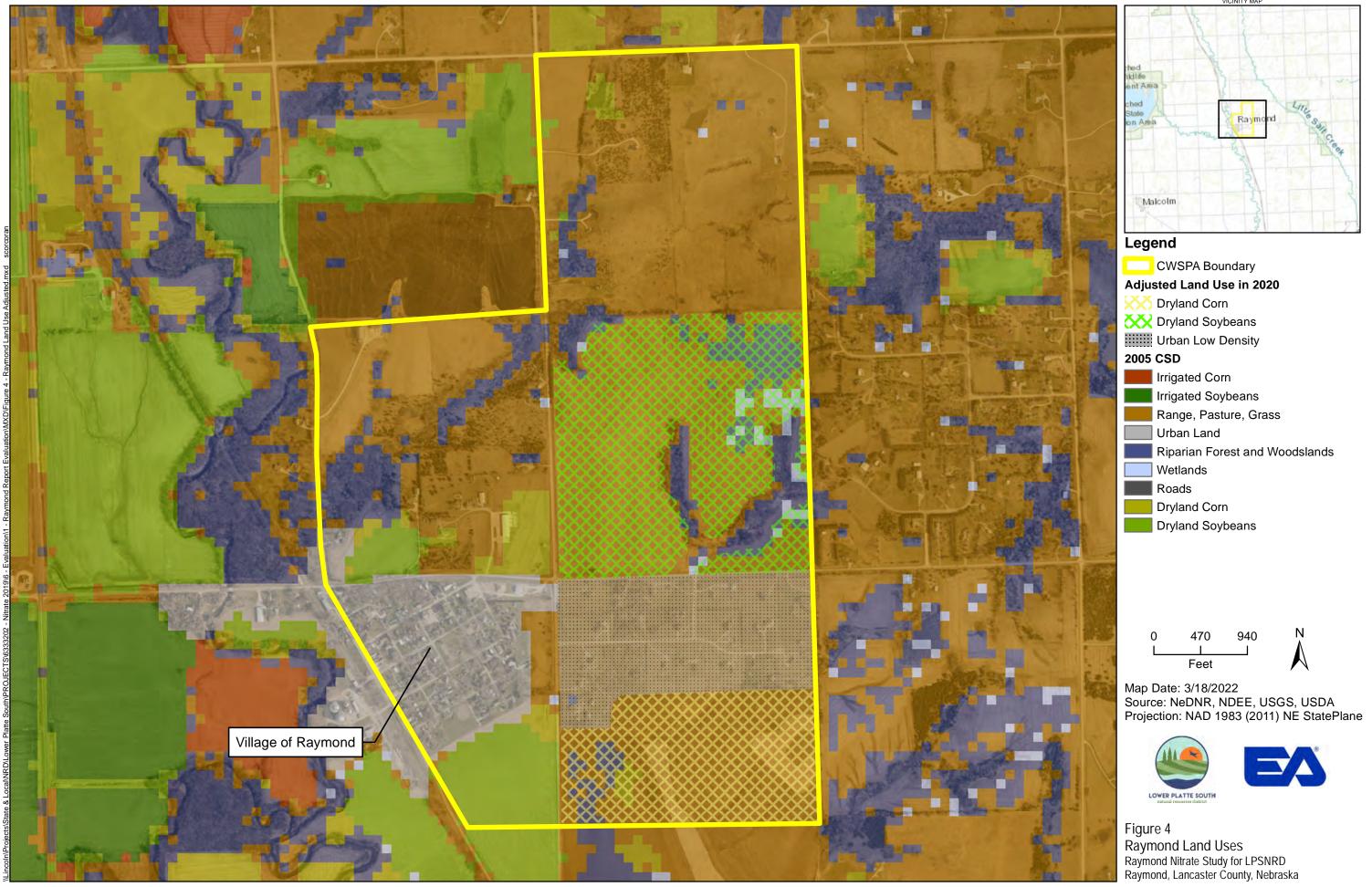

Land Use	CSD 2	2005	Field Adjusted	
	Acres	%	Acres	%
Range, Pasture, Grass	510.7	73.0	235.9	33.7
Urban Land	65.8	9.4	139.2	19.9
Riparian Forest and Woodlands	64.2	9.2	64.2	9.2
Wetlands	7.4	1.1	7.4	1.1
Dryland Corn	19.5	2.8	92.4	13.2
Dryland Soybeans	32.1	4.6	160.6	23.0
Total	700	100	700	100

Table 1. Raymond Study Area Land Use Categories

*Source: University of Nebraska-Lincoln, Conservation Survey Division, 2005 http://snr.unl.edu/data/geographygis/land.aspx

Land use within and surrounding Raymond is illustrated in Figure 4. During field verification, it was found that two cropland areas and one urban land area (low density) were outdated and these areas were significant. The revisions based on field verification are shown on Figure 4 and the revised acres are shown in separate columns in Table 1.

All the cultivated crops within the Raymond CWSPA currently use dryland farming techniques. An irrigation well exists south of the CWSPA, but evidence of recent irrigation was not found during review of aerial images and during visual reconnaissance. This page intentionally left blank

This page is intentionally left blank.

3.2 REGIONAL HYDROGEOLOGY

Lancaster County is primarily dependent on groundwater resources for domestic and irrigation uses. The main aquifers of the county lie within the Quaternary System with older bedrock consisting of the Cretaceous bedrock, as well as within Quaternary sediments composed of sands and gravel (Divine, 2014). These Quaternary sediments provide the main source of water usage for the county, yielding mostly high-quality water, with some smaller areas producing more highly mineralized groundwater (Druliner & Mason, 1994).

3.3 SITE HYDROGEOLOGY

The localized areas of Raymond, Nebraska surficial features are described as dissected rolling hills, formed by erosion of loess exposing the more resistant glacial sediments below. This is combined with the flatter landscape of the Oak Creek Valley. Approximate surface elevations range between 1,200 feet to 1,350 above mean sea level (AMSL). Depth to water in the local area ranges from approximately 0 to 100 ft below ground surface. Aquifers in the area occur in alluvial sediments, as well as glacial sediments of the Quaternary. Fresh groundwater quality has been of concern in the area due to iron and manganese concentrations, as well as saltwater intrusion issues (Young et al, 2016). Water supply for the municipal wells is screened in the Dakota Group Shale and Sandstone. The water bearing formations (alluvial sediments and the Dakota Group Shale and Sandstone) are generally connected hydraulically.

3.4 SURFACE DRAINAGE

Due to past glaciation, this area of Lancaster County is primarily defined as dissected rolling hills surrounding the flatter Oak Creek Valley. North Oak Creek, a tributary of Salt Creek, lies less than half a mile outside the western portion of the CWSPA. The typical ground surface elevation decreases across the CWSPA boundary from north to south and ranges between 1,345 AMSL in the north to 1,215 ft AMSL in the south.

3.5 POINT SOURCE INVESTIGATION

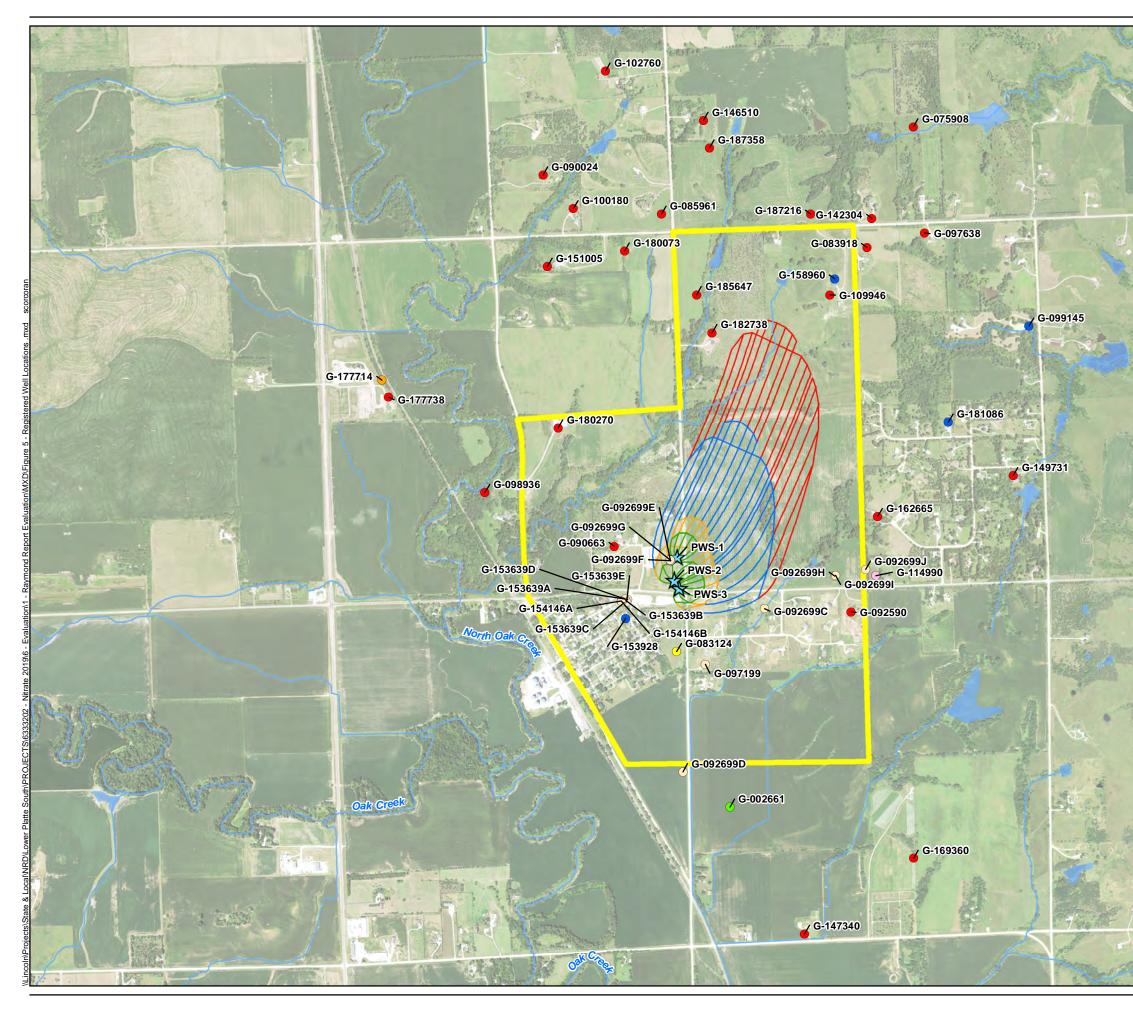
An investigation was conducted by EA to identify any recorded contaminant spills in the Raymond CWSPA area using readily available resources in Lancaster County. The investigation did not identify any point source locations of reported nitrate-N spills within the Raymond CWSPA. A Tier I investigation was conducted in the study area as described in Section 2.3; however, the spill site would not be a significant contributor to nitrate-N.

The records indicate a single nitrate-N sampling event from one privately owned, inactive domestic well located east of the CWSPA boundary on the edge of a dryland row crop area. The records show the single sampling event from 2014 with nitrate-N reporting at 4.09 mg/L.

3.6 REGISTERED WELLS

Registered wells from the Nebraska Department of Natural Resources (NDNR) database were identified inside Raymond CWSPA and within a ¹/₂ mile surrounding the Raymond CWSPA as shown in Figure 5 and listed in Table 2. A total of 27 registered wells are currently active within the CWSPA; including three public water supply wells, six domestic wells, two ground heat exchange wells, 15 monitoring wells and one well registered as 'other' with the intended use for lawn watering.

Two separate single use project well nests exist within the Raymond CWSPA. The United States Department of Agriculture (USDA) installed 9 monitoring wells in and surrounding the CWSPA boundary in part to monitor carbon tetrachloride. The second well nest is completely located within the Raymond CWSPA and includes 7 wells monitored by Lancaster County and overseen by NDEE. These wells were installed to monitor a petroleum spill in 2009. Additional information regarding the Lancaster County petroleum spill is found in Section 2.3.


Additional wells surrounding the CWSPA are shown in Table 2 to illustrate types of wells, typical well depths and pumping rates for wells in the vicinity.

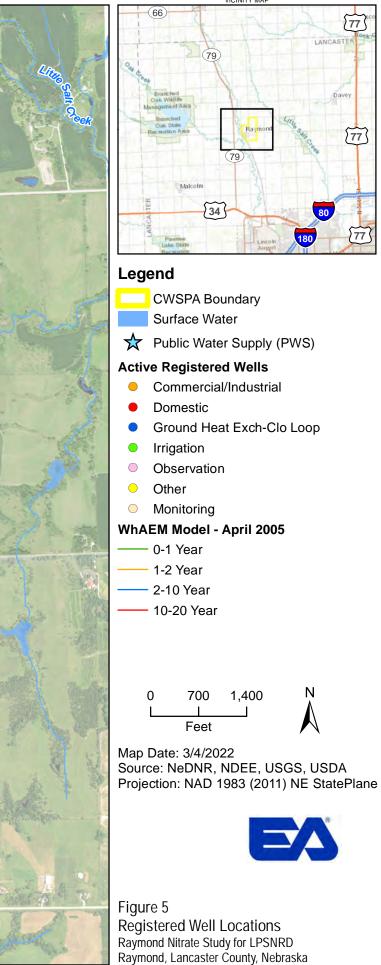

Wells Within Raymond CWSPA Boundary						
Location	Use	Year Completed	Status	Well Depth (ft)	Pump rate (gallons per minute)	
G-084063	Municipal	1995	Α	80	80	
G-084064	Municipal	1995	Α	85	80	
G-111121	Municipal	2001	Α	100	60	
G-090663	Domestic	1996	Α	130	10	
G-092590	Domestic	1997	А	177	12	
G-109946	Domestic	2001	А	140	10	
G-180270	Domestic	2016	А	141	30	
G-182738	Domestic	2017	А	80	20	
G-185647	Domestic	2018	А	80	20	
G-153928	Ground Heat Exchange	2009	А	180	0	
G-158960	Ground Heat Exchange	2011	Α	200	0	
G-083124	Other	1994	Α	67	0	
G-092699C	Monitoring	1997	Α	70	0	
G-092699E	Monitoring	1997	А	165	0	
G-092699F	Monitoring	1997	А	90	0	
G-092699G	Monitoring	1997	А	35	0	

Table 2.	Registered We	lls Within and Sur	rounding the Raymond CWSP	Α
----------	----------------------	--------------------	---------------------------	---

Wells Within Raymond CWSPA Boundary					
Location	Use	Year Completed	Status	Well Depth (ft)	Pump rate (gallons per minute)
G-092699H	Monitoring	1997	Α	18	0
G-092699I	Monitoring	1997	Α	117	0
G-092699J	Monitoring	1997	Α	25	0
G-097199	Monitoring	1998	Α	50	0
G-153639A	Monitoring	2009	А	38	0
G-153639B	Monitoring	2009	А	57	0
G-153639C	Monitoring	2009	А	42	0
G-153639D	Monitoring	2009	А	28	0
G-153639E	Monitoring	2009	А	28	0
G-154146A	Monitoring	2009	А	55	0
G-154146B	Monitoring	2009	А	26	0
	Wells Surrounding	CWSPA Boun	dary Wi	thin 0.5 Miles	
G-177714	Commercial/Industrial	2015	А	80	65
G-075908	Domestic	1982	А	58	30
G-083918	Domestic	1994	Α	132	12
G-085961	Domestic	1995	Α	193	10
G-090024	Domestic	1996	А	163	0
G-097638	Domestic	1998	Α	110	9
G-098936	Domestic	1998	А	40	10
G-100180	Domestic	1997	А	77	7
G-102760	Domestic	1999	Α	155	20
G-142304	Domestic	2006	А	133	10
G-146510	Domestic	2007	А	140	5
G-149731	Domestic	2008	А	180	10
G-151005	Domestic	2008	А	112	10
G-162665	Domestic	2012	А	150	10
G-169360	Domestic	2013	Α	101	18
G-177738	Domestic	2015	А	80	20
G-180073	Domestic	2016	Α	177	15
G-187216	Domestic	2019	Α	140	15
G-187358	Domestic	2019	Α	141	10
G-147340	Domestic	2019	Α	54	10
G-099145	Ground Heat Exchange	1998	Α	170	0

Wells Within Raymond CWSPA Boundary						
Location	Use	Year Completed	Status	Well Depth (ft)	Pump rate (gallons per minute)	
G-181086	Ground Heat Exchange	2016	А	40	0	
G-002661	Irrigation	1956	А	78	800	
G-114990	Observation	2002	А	77.5	0	
G-092699D	Monitoring	1997	А	56	0	

This page intentionally left blank

3.6.1 Public Water Supply Wells

The Village of Raymond obtains drinking water from three wells: PWS-1 (G-111121) originally drilled in 2001 to a depth of 100 ft. PWS-2 (G-084064) originally drilled in 1995 to a depth of 85 ft. PWS-3 (G-084063) originally drilled in 1995 to a depth of 80 ft. PWS-1 has a screened interval at 85 ft to 97 ft. PWS-2 has a screened interval of 70 ft to 85 ft. PWS-3 has a screened interval at 60 ft to 80 ft.

The Safe Drinking Water Act (SDWA) sets national limits on contaminant levels in drinking water to ensure that the water is safe for human consumption. The EPA regulates how often public water systems must monitor their water for contaminants. Generally, the larger the population served by a water system, the more frequent the monitoring and reporting requirements. Groundwater samples are collected by local communities to meet these regulatory requirements. The Nebraska Department of Health and Human Services (NDHHS) regulates the sample collection, analyzes the samples, oversees quality assurance (QA) and quality control (QC) procedures, and reports the results to the community and EPA.

Historical nitrate-N results for the Raymond municipal wells for dates ranging from 2003 to 2018 available through NDHHS are presented in Table 3 (NDHHS 2018). None of the municipal wells have exceeded the MCL of 10 mg/L nitrate-N. However, two wells have reached the 50% MCL of 5.0 mg/L nitrate-N. PWS-2 (G-084064) has reached a maximum nitrate-N of 6.4 mg/L in 2008. Data from the collected samples over time indicate that nitrate-N is fluctuating, but generally staying between 3 and 6 mg/L.

Nitrate-N Concentrations (mg/L) – Public Water Supply Wells							
Sample Date	Raymond #1 North (G-111121)	Raymond #2 Middle (G-084064)	Raymond #3 Southeast (G-084063)				
08/27/2003	3.9	5.9	5.0				
09/13/2004	3.3	5.5	4.5				
08/18/2005	3.7	6.0	4.8				
08/23/2006	4.3	4.4	-				
07/11/2008	3.5	6.4	5.3				
06/11/2009	4.0	4.9	4.1				
07/07/2010	3.8	4.8	4.4				
08/10/2011	3.8	4.4	4.6				
08/08/2012	4.1	4.3	4.1				
06/04/2013	3.5	4.6	4.1				
09/17/2014	2.9	3.9	3.8				
09/29/2016	3.4	4.4	4.2				
06/13/2017	3.1	4.1	4.7				
06/26/2018	4.2	5.3	5.3				

 Table 3.
 Municipal Well Groundwater Nitrate-N Sample

3.7 WELLHEAD ANALYTICAL ELEMENT MODEL REVIEW

Wellhead Analytic Element Model (WhAEM) is a public domain, groundwater flow model designed to facilitate capture zone delineation and protection area mapping intended to support the State's Wellhead Protection Programs (WHPP) and Source Water Assessment Planning for public water supplies. The WhAEM for the Raymond municipal wells was originally run by the Nebraska Department of Environmental Quality (NDEQ; currently titled Nebraska Department of Environment and Energy, NDEE) in 2005 using readily available information. In order to review the previous results, the newest version of the model (WhAEM2000) was downloaded from the EPA's website (EPA 2007). Hard copies of the original model results and available supporting documentation were obtained from the NDEE.

The WhAEM Model Review Report concluded that the base of aquifer elevation in Raymond is 1,170 feet, which was a reasonable estimate based on the information available at the time. Aquifer thickness was reported to be 112 ft and was based on the average aquifer thickness from the three production well logs. Thus, the model aquifer thickness is likely greater than the actual aquifer thickness. The hydraulic conductivity was reported at 8 feet/day for the which appears to be a higher estimate of hydraulic conductivity, but not unreasonably high. A low porosity was used for the model at 0.07. This suggested value may be low, but appropriate.

The conclusion from the review of the WhAEM Model suggested that the model assumptions appeared to be reasonable. A full report for the WhAEM Review Report and associated information can be found in Appendix A. The WhAEM Model capture zones are for 1, 2, 10, and 20 years and can be viewed in Figure 5.

4. METHODS OF INVESTIGATION

The Raymond nitrate-N verification study involved an inventory and assessment of available information, the collection and analyses of shallow soil samples, subsurface soil samples, and groundwater samples, and the installation of groundwater monitoring wells.

The field work for sample collection was conducted in November and December 2020, and the field work for monitoring well installation was conducted in November 2021. The field work was completed in general conformance with the Work Plan, Nitrate Studies for Two Communities Water Systems Raymond and Ashland (EA 2020). The methods and procedures of the investigation are summarized in the following sections. See the Work Plan for additional details.

4.1 SHALLOW SAMPLING

The objective of the shallow soil sampling was to obtain nitrate-N levels both within and below the root zone. Shallow soil sample locations were chosen to be representative of different soil types, topography, drainage, and land use.

A small truck-mounted Giddings rig was used to collect shallow soil samples from the surface to 15 ft below grade. Shallow soil samples were collected by pushing a 1 ½ inch interior diameter by 60-inch-long sample tube. Soil samples were collected from 3 ft intervals and were homogenized by thoroughly mixing retrieved soil from each sampling interval in a large, rubberized container. Each sample sent to the laboratory was comprised of several sub-samples randomly collected from throughout the rubberized container. The homogenized samples were analyzed for nitrate-N.

Shallow soil samples were collected from 6 sites, with 5 borings per site, resulting in 30 sample locations. Samples were collected from 5 depth intervals at each location (increments of 3 ft, to a maximum depth of 15 ft). This yielded a total of 149 shallow samples collected.

4.2 DIRECT PUSH SAMPLING

Direct push technology was used to collect both subsurface soil samples and groundwater samples. The objective of the direct push sampling was to obtain deeper nitrate-N soil profiles, to provide additional geologic information, and to collect representative groundwater samples.

The direct push sampling locations were selected within the CWSPA based upon geographical availability. Each deep soil sample was collected during the same winter season.

Soil borings were properly abandoned as required by Nebraska Title 178 NAC 12 (NDHHS, 2005) by filling the boreholes with bentonite to within 3 ft of the surface. The remaining 3 ft was backfilled with native earth material with mounding for settling.

4.2.1 Deep Sampling

Direct push methods were used to collect deep soil samples at 5 ft intervals beginning at the surface and ending at the water table of the unconfined aquifer (defined as 5 ft of continuous saturated soil) or refusal. When the water table was encountered in clay, the boring was continued until sand was encountered to allow for groundwater sample collection. The soil sampling was conducted using a truck-mounted hydraulic direct-push drill rig. A direct-push soil sampling probe was advanced under hydraulic pressure to the selected sample depth where a representative sample from each interval was retrieved.

A lithological description of each recovered sample interval was recorded on a standard boring log form. Information recorded included the boring location, drilling and sampling methods, sampling interval, sample descriptions, and soil descriptions. Soil descriptions were recorded in accordance with the Unified Soil Classification System. Boring logs are included in Appendix B.

A soil sample from each interval was obtained by thoroughly mixing retrieved soil in a large, rubberized container. The sample was comprised of one sample the length of the retrieved 5 ft sample probe and randomly collected from throughout the rubberized container.

Deep soil samples were collected from 10 sites, with 1 to 2 locations per site, resulting in 12 sample locations. Samples were collected from 5 to 13 depth intervals at each location (increments of 5 ft, to a range of 25 to 64 ft). This yielded a total of 101 deep samples collected.

4.2.2 Groundwater Sampling

A groundwater sample was collected from the unconfined aquifer at 8 of the 12 of the direct push boring locations. Groundwater samples were collected utilizing a water sampling probe which was advanced under hydraulic pressure to the selected sample depth. The sample probe was then extruded exposing a 1-inch to 1 ¹/₄-inch outside diameter, stainless steel slotted screen that was connected to a series of threaded steel probe rods and an expendable point.

Groundwater samples were extracted from inside the probe using dedicated polyethylene sample tubing and attached mini-check valve. Groundwater samples were collected in a 500 milliliter (mL) plastic laboratory sample container, preserved with sulfuric acid (H₂SO₄), placed in a cooler filled with ice, and delivered to the LPSNRD for laboratory analyses of nitrate-N.

4.3 MONITORING WELLS

The primary purpose of the groundwater monitoring wells was to provide semi-permanent locations for collection of groundwater samples to monitor nitrate-N levels and other constituents and provide reliable information related to groundwater levels. Additional geologic information was gathered during drilling from the drill cuttings. Three permanent monitoring wells were installed. The following subsections describe the methods of installation and sampling procedures.

4.3.1 Monitoring Well Drilling

Subsurface drilling was completed using a truck-mounted mud rotary drilling rig. A six-inch diameter drilling bit was attached to the drilling stem and advanced until bedrock was encountered, or to a depth where a productive screened interval within the targeted aquifer was reached. Soil cuttings were collected from the drill wash. Cuttings were collected approximately every 5 ft, or when a lithological change was encountered.

A lithological description was recorded on a standard boring log form. Information recorded included the boring location, drilling and sampling methods, sampling interval, sample descriptions, and soil descriptions. Soil descriptions were recorded in accordance with the Unified Soil Classification System. Boring Logs are included in Appendix B.

Since mud rotary drilling was used to install the monitoring wells, no soil samples were collected for laboratory analysis.

Upon terminating the boring at bedrock or to a depth providing a productive screened interval, the drill bit and stem were removed from the bore hole. A 9-inch diameter drill bit was then attached to the drill stem and advanced to a depth approximately halfway between the regional water table and bedrock for well screen installation.

4.3.2 Monitoring Well Construction and Development

Monitoring wells, (RMW-1, RMW-2, and RMW-3) were installed on private properties. Monitoring wells were constructed and installed by a Nebraska licensed well drilling professional in accordance with Nebraska Water Well Standards, Title 178 NAC12, Regulations Governing Water Well Construction, Pump Installation and Water Well Decommissioning Standards (NDHHS, 2005).

Wells were constructed with 4-inch diameter, threaded, schedule 40 polyvinyl chloride (PVC) casing. The well screen is comprised of 10 ft of 0.010-slot factory slotted screen. Sand filter pack was placed to a minimum of 2 ft above the well screen. A minimum 5 ft bentonite seal and a high solids bentonite grout to the surface were placed on top of the sand filter pack. Well construction diagrams are included in Appendix B.

Each well was developed after construction by placing a pump near the bottom of the well and purging until clear water was obtained or a maximum of two hours had elapsed.

After development, a Grundfos submersible pump connected to 1-inch schedule 80 PVC drop pipe was installed in each well, with a sampling port and electrical plug at the top of the well casing. Each well was completed with a stick-up protective casing, concrete pad, and bollards.

4.3.3 Monitoring Well Groundwater Sampling

The LPSNRD periodically samples and conducts water level measurements from monitoring wells and several other well types (irrigation, municipal, etc.) throughout the LPSNRD to help determine trends in both water quality and quantity. In some cases, wells are drilled strictly for monitoring purposes, and other times existing municipal or irrigation wells are added to the network through agreements with landowners.

In December 2021, the LPSNRD collected groundwater samples from the Raymond monitoring wells installed as part of this study. The results of the LPSNRD groundwater sampling were reviewed and incorporated into this report.

4.4 SAMPLE IDENTIFICATION

The following information was recorded in the field for each sample collected.

- Date/time of sampling
- Land use description at time of sampling
- Sampling depth information
- Direct push/boring identification number
- Laboratory method(s)

Unique sample identification numbers were assigned to each sample collected. Samples collected during the field effort (November-December 2020 and November-December 2021) were given the acronym "DS" for deep sample by direct push soil sample locations, "SS" for shallow soil sample locations, and "MW" for monitoring well sample locations.

For example, sample number RDS008 was a Raymond (R) deep sample by direct push (DS) at location 008.

4.5 QA/QC PROCEDURES

Quality assurance samples (duplicates) were collected to provide a blind sample to the laboratory that could be compared to the original environmental sample results.

The QA/QC samples were given a different identification number from the original environmental sample. For example, the QA/QC sample collected from location RDS010-15 was identified as sample DSDUP-17 (QA sample). An internal duplicate tracking sheet was used to keep a record of duplicate and parent sample relationships.

4.6 UTILITY CLEARANCES

Utility clearances were conducted prior to any drilling or subsurface work. Utility locations were confirmed by locating manholes, poles, vaults, and other related structures. Two to ten business days prior to beginning drilling and sampling activities, the One-Call System and appropriate

utility companies were contacted to locate buried utilities. Information collected during the utility surveys was documented in a field logbook.

4.7 SURVEY

4.7.1 Monitoring Well

Horizontal locations were established using a real-time kinematic (RTK) global positioning system (GPS) survey system to within 0.1 ft and referenced to the Nebraska Plane Coordinates, 1983 North American Datum (NAD83). Elevation (grade) for the monitoring well was established to the nearest 0.01 ft and referenced to the 1988 North American Vertical Datum (NAVD88). Elevation was established for both ground elevation at the well and measuring point (top of casing).

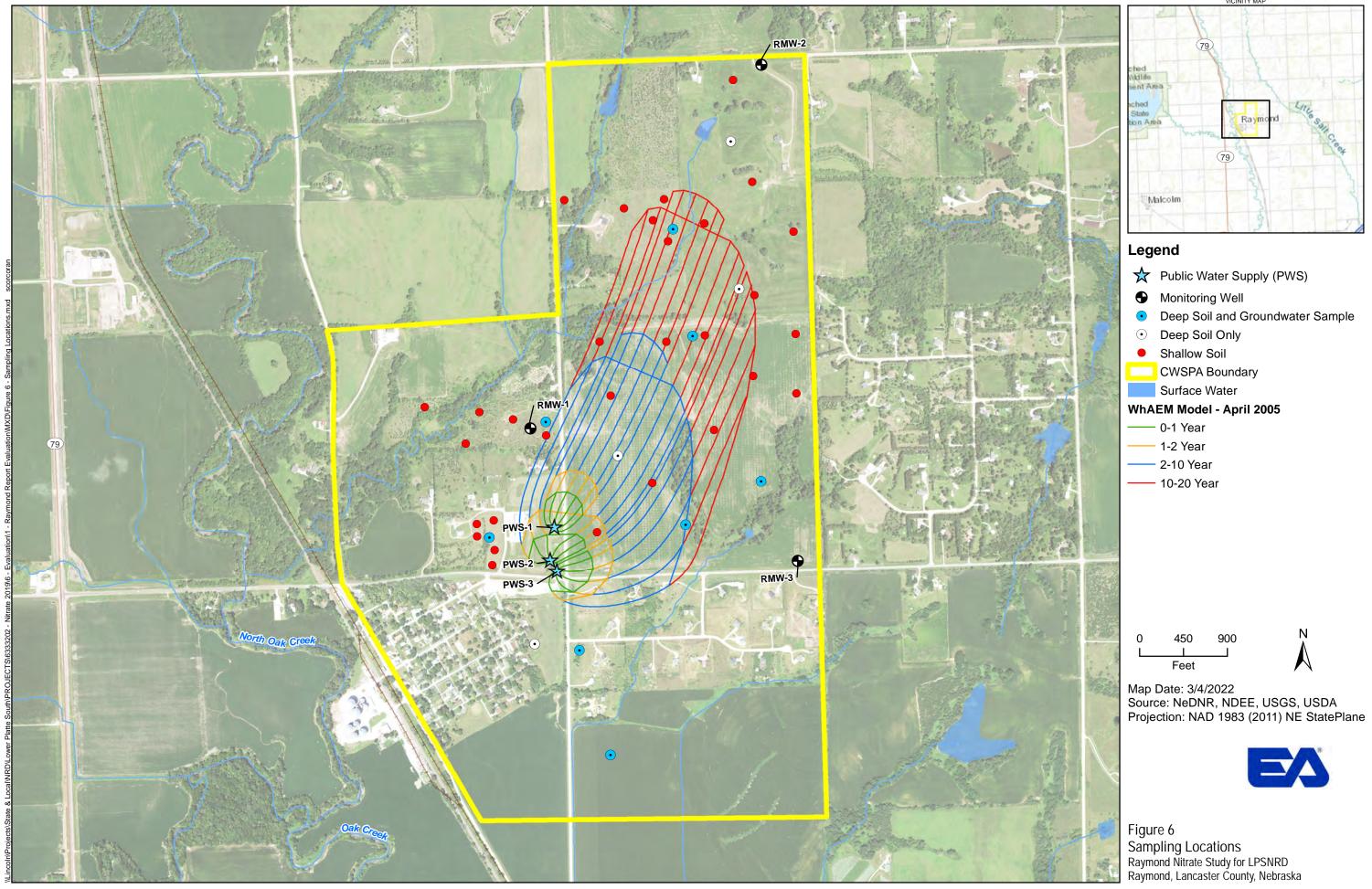
4.7.2 Deep Vadose Zone Sampling and Shallow Vadose Zone Sampling Locations

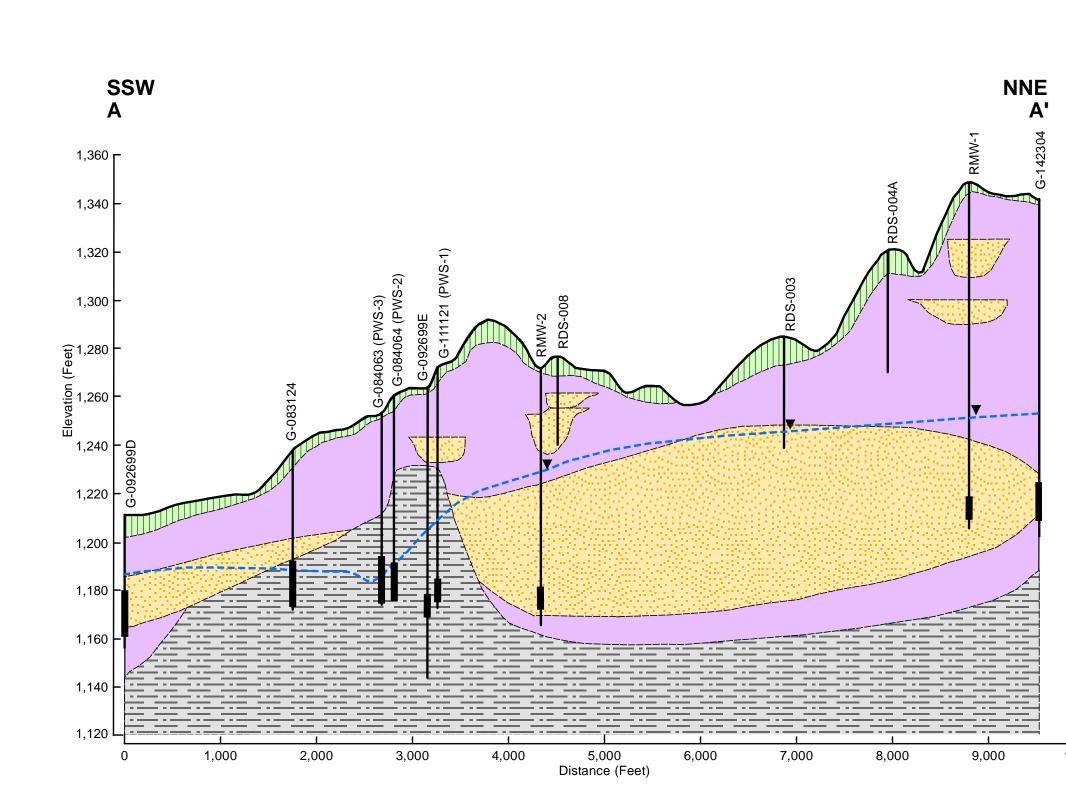
The horizontal location of the deep and shallow sampling locations was established to the nearest +/-2 ft using a hand-held GPS and referenced to the Nebraska State Plane Coordinates, 1983 NAD83. Soil sample elevations were determined from LiDAR based on GPS location.

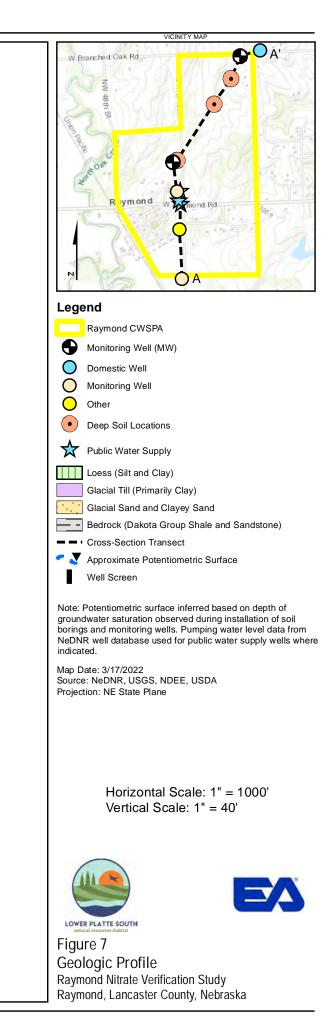
4.7.3 Irrigation and Domestic Wells

No survey was completed for existing irrigation and domestic wells. State records available from the NDNR and aerial photography were used to determine the potential location of irrigation and domestic wells. A visual site reconnaissance was completed to verify well locations. Elevation (grade) of existing well locations was estimated using Digital Elevation Model topography obtained from LiDAR data. This information was only collected for wells included in the geologic profile

5. RESULTS


This section presents the information obtained from the methods of investigation described in Section 4, including the review of the physical setting and regional site hydrogeology, and the results of the drilling, sampling, and laboratory analyses.


The deep soil samples and the shallow soils samples are categorized in this study by land use description at the time of sampling in November and December 2020 when field investigations took place. Likely, the land use changes from year to year using crop rotation methods; therefore, there are limitations in which conclusions can be made between corn and soybeans. Throughout the remainder of this report, land use descriptive terms are used to generalize deep and shallow soil categories to represent land use at the time of sampling.


Locations for the monitoring wells and soil sampling are shown in Figure 6.

5.1 GEOLOGIC PROFILE

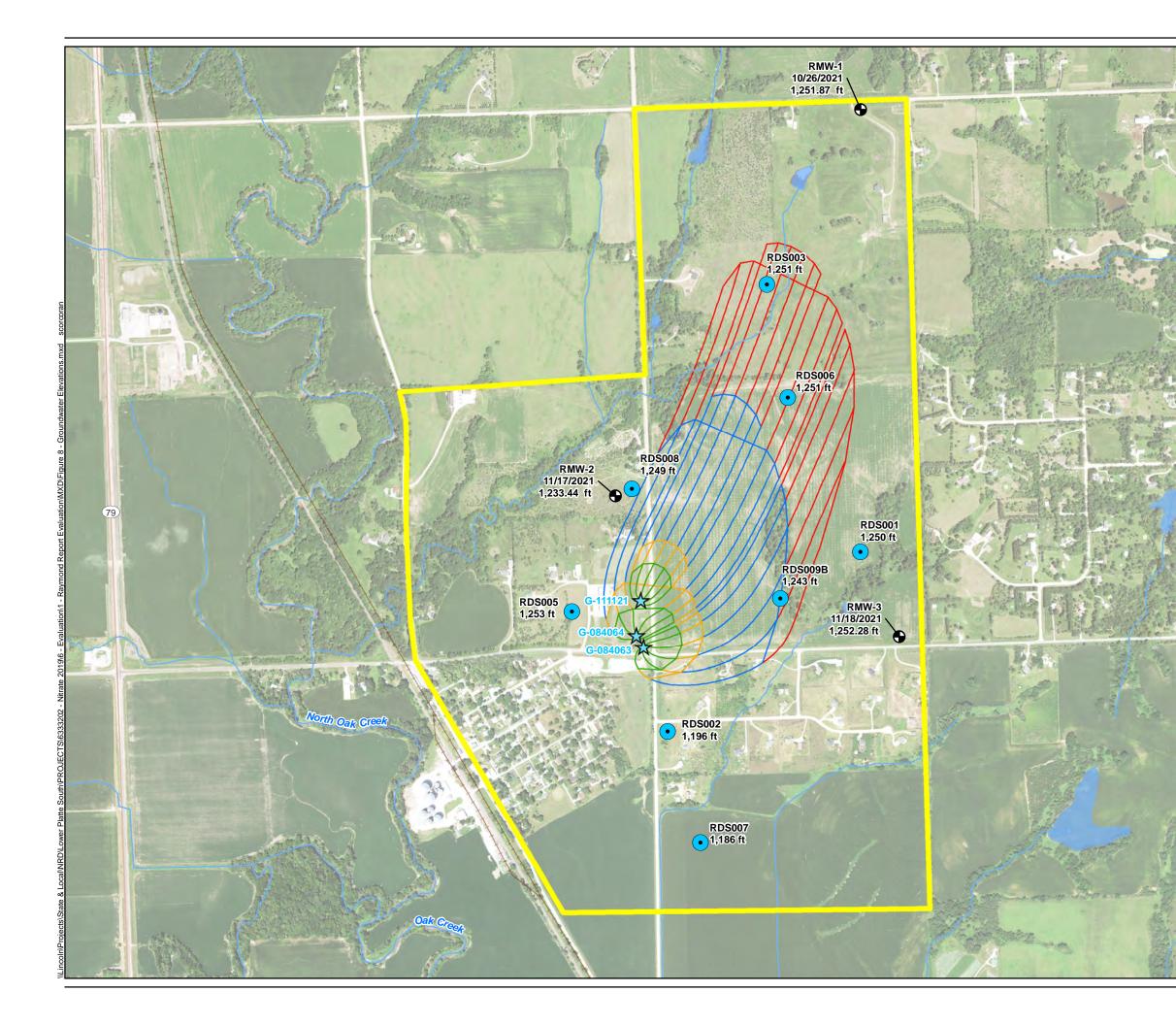
Detailed geologic logs were prepared from the deep soil direct push soil samples and from the drill cuttings obtained during installation of the monitoring wells. A geologic profile was created based on the geologic logs collected for this study and well logs available for select registered wells. The geologic profile is shown in Figure 7.

10,000

5.2 GROUNDWATER LEVELS

5.2.1 Groundwater Levels During Field Investigation

Groundwater levels at the direct push locations were estimated as shown in Table 4 by measurement with an electronic water level tape and referenced to the ground surface elevation.


Results from direct push technology for deep samples indicate that generally, the water surface elevations fall into a range of 1,196 - 1,253 feet AMSL. Geologic materials in all twelve deep soil boring locations indicate a variety of sands, fine to medium grained sands, silty clays, and a few locations of clay and sandy clay. Based on monitoring well bore logs, the bottom of boreholes was comprised of fine sands, fine gravels and clays, or shale, siltstone, and sandstone.

Location	Ground Elevation (ft AMSL)	Depth to Water (ft bgs)	Water Elevation (ft AMSL)	Date
RDS001	1281	31	1250	12/10/2020
RDS002	1235	39	1196	12/12/2020
RDS003	1288	37	1251	12/11/2020
RDS005	1277	24	1253	12/12/2020
RDS006	1299	48	1251	12/11/2020
RDS007	1222	36	1186	12/11/2020
RDS008	1283	34	1249	12/12/2020
RDS009B	1263	20	1243	12/10/2020

Table 4. Raymond Study Area - Groundwater Level Measurements

Estimated groundwater elevations from the field investigation are illustrated in Figure 8.

Additionally, three permanent monitoring wells were installed in November 2021. Groundwater levels were measured in the three monitoring wells with an electronic water level tape as noted on the boring logs and referenced to measuring point elevation (top of casing) as shown in Table 5. Depth to water varied from approximately 34 ft to 99 ft. The monitoring wells are screened in a relatively shallow glacial sand deposits of the that are assumed to be hydraulically connected to deeper Dakota Group shale and sandstone deposits.

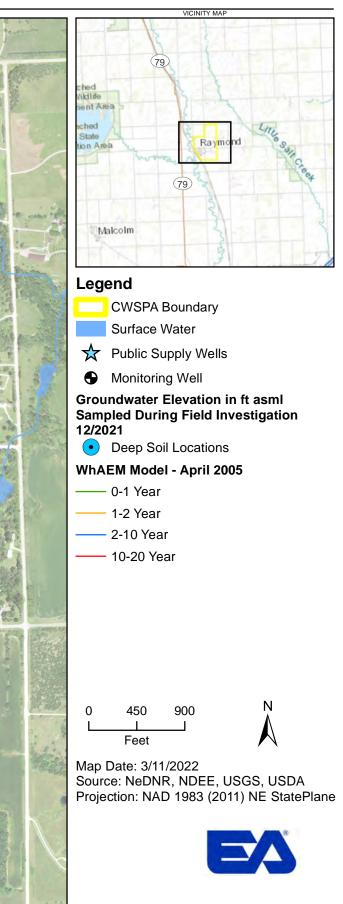
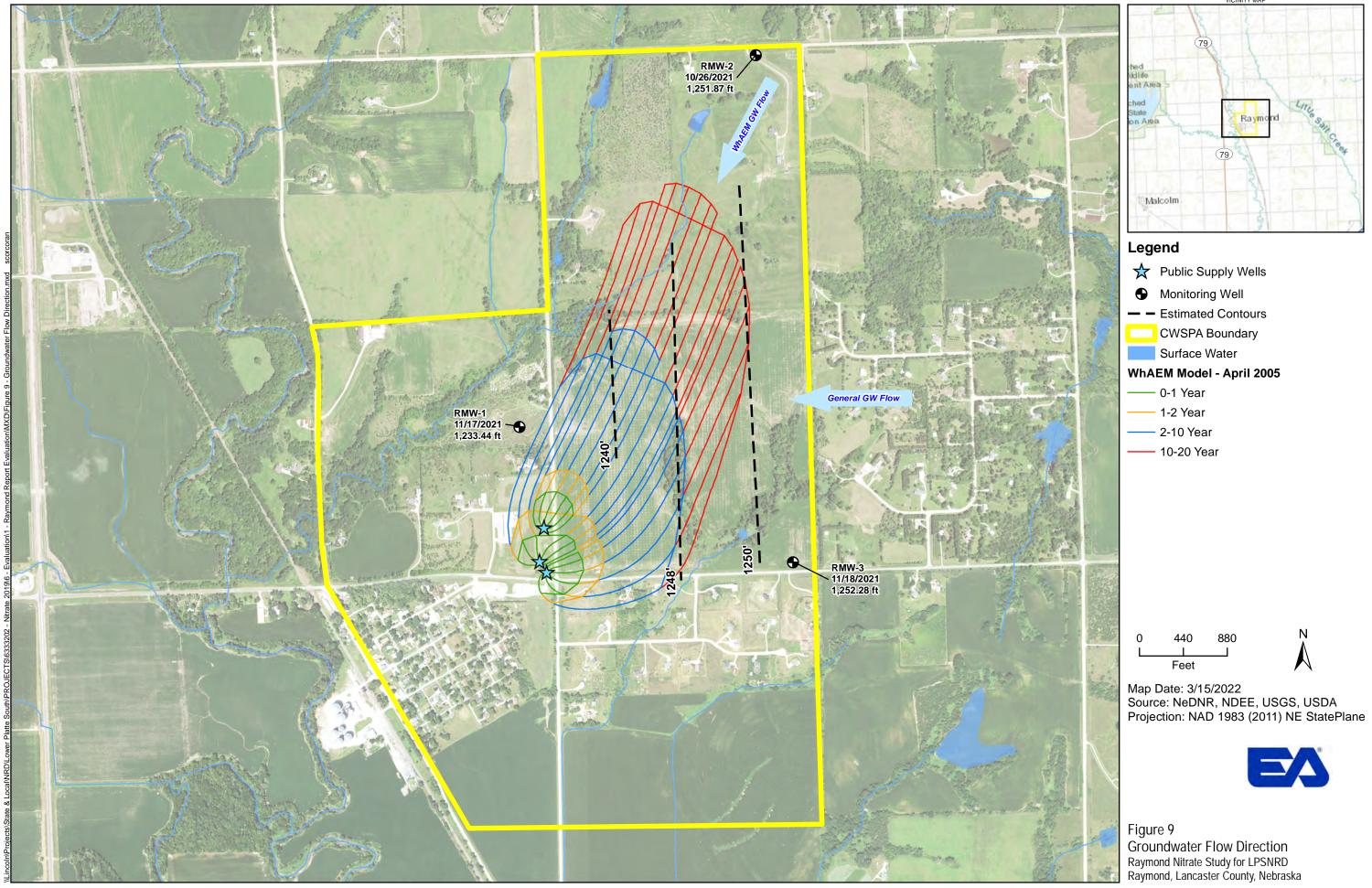


Figure 8 Groundwater Elevations Raymond Nitrate Study for LPSNRD Raymond, Lancaster County, Nebraska

5.2.2 Groundwater Flow Direction


The direction and gradient of groundwater flow was determined using triangulation from water level measurements from the three monitoring wells collected by the LPSNRD during the 8 December 2021 sampling event. The water level measurements are shown in Table 5. The gradient was found to be 0.0071 ft/ft and flow direction is to the west as shown in Figure 9.

Well Name	Measuring Point Elevation	Depth to Water from TOC	Water Level Elevation
RMW-1	1,351.42	99.55	1,251.87
RMW-2	1,276.92	43.48	1,233.44
RMW-3	1,286.51	34.23	1,252.28

Table 5. Groundwater Flow Direction Measurements

It should be noted that the groundwater levels south of the Raymond public wells are much lower than north of the public wells. The three monitoring wells are intended to describe the flow direction north and east of the Raymond well field. The lower groundwater levels south of public wells are illustrated in geologic profile (Figure 7) and the deep borings (RDS002 and RDS007) shown in Figure 8.

Based on these results, the groundwater flow direction was found to be slightly different than the original estimated groundwater flow direction used in the WhAEM modeling. The two groundwater flow arrows are presented in Figure 9. The WhAEM GW Flow arrow represents the original groundwater flow included in the WhAEM model. The General GW Flow arrow represents the groundwater flow direction based on the monitoring wells. The general flow direction determined in this study, is oriented more towards west while the previous estimate was towards southwest (Figure 9).

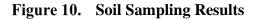
5.3 NITRATE LOADING

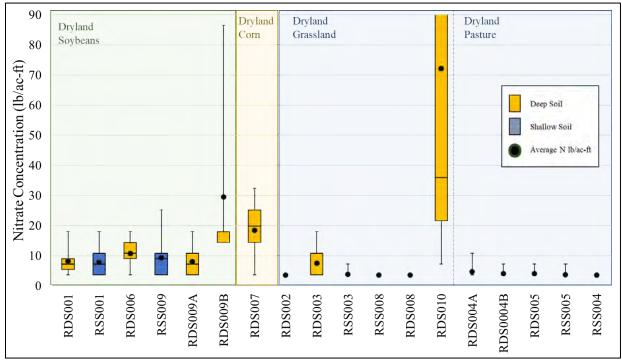
Deep and shallow soil borings were conducted to determine the amount of nitrate present within the subsurface. Nitrate results are presented in several different ways. Individual soil sample results were reported from the laboratory in units of ppm, and these results were converted to nitrate pound(s) per acre-foot (N lb/ac-ft). Total nitrate for entire boring depth is the cumulative nitrate pound(s) per acre (N lb/ac) through the depth of the boring.

5.3.1 Shallow Soil Samples

The results from the shallow soil borings are summarized in Table 6 and Figure 10, organized by site. Each site included five shallow soil borings. Figure 10 is a combination of all five shallow soil borings for each site. Appendix C contains the laboratory results. A detailed table of the shallow soil sampling results, including totals above and below the root zone, is included in Appendix D. Note that the land use listed is based on the observations during the field effort. It is recognized that crop rotation is a common practice in the area.

Site ID	Land Use	Boring Depth (ft)	Maximum Nitrate-N lb/ac-ft	Average Nitrate-N lb/ac-ft	Total Nitrate- N lb/ac
RSS001	Dryland Soybeans	15	18.04	7.79	117
RSS003	Range Pasture Grass	15	7.22	3.90	58
RSS004	Range Pasture Grass	15	3.61	3.61	54
RSS005	Range Pasture Grass	15	7.22	3.75	56
RSS008	Woodland	15	3.61	3.61	54
RSS009	Dryland Soybeans	15	25.26	9.32	134

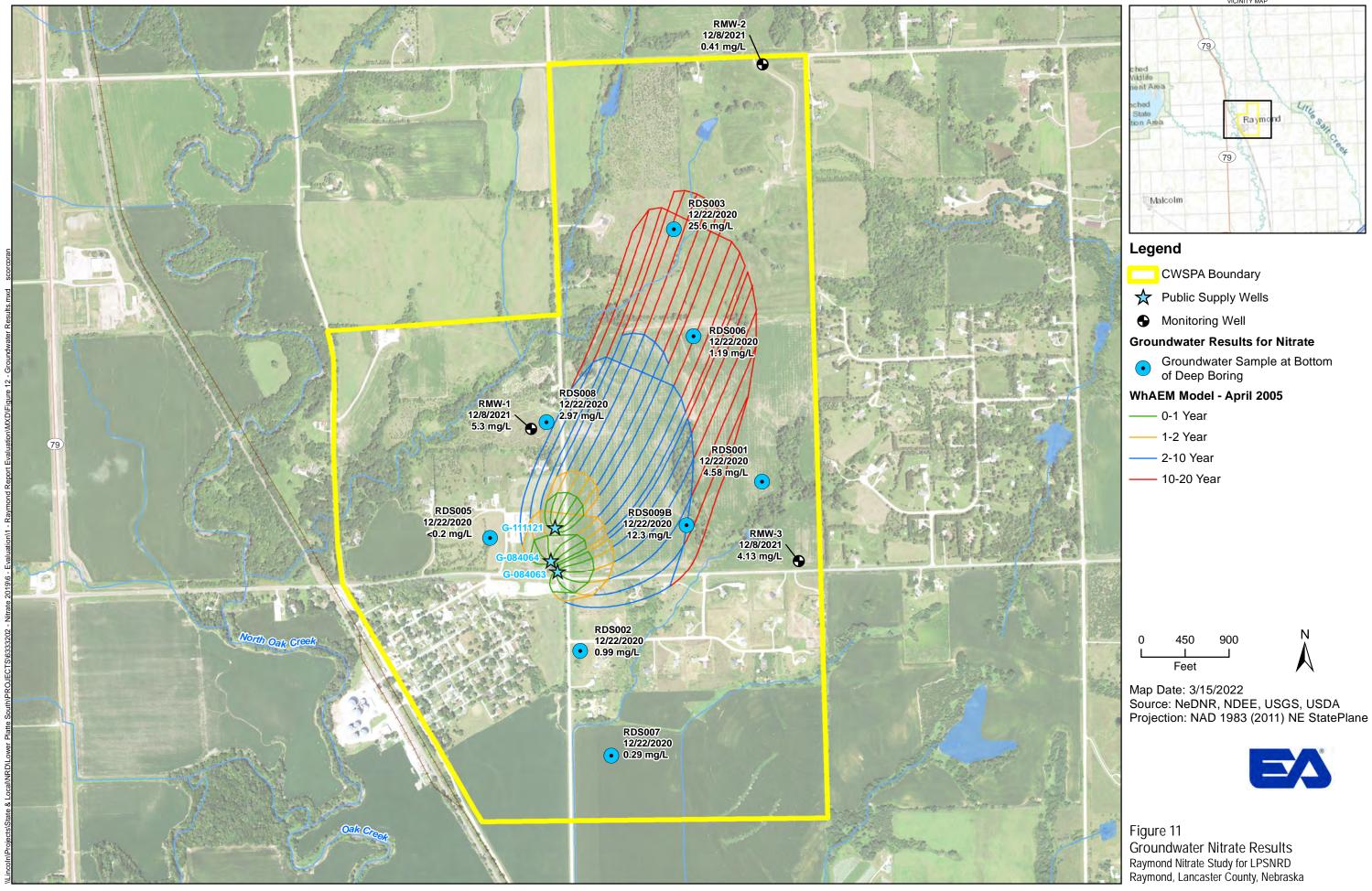

 Table 6.
 Summary of Nitrate Results for Shallow Borings


5.3.2 Deep Soil Samples

For deep soil borings, the average nitrate (lb/ac-ft) and total nitrate (lb/ac) results are represented in Table 7 and Figure 10, organized by site. Total nitrate is useful because it provides a convenient summation of the results from one boring deeper into the ground; however, it should be remembered that the depth of the boring influences the total nitrate (lb/ac) calculation and land use is categorized based on what land use was present at time of sampling. Appendix C contains the laboratory results. A detailed table of the deep sampling results is included in Appendix E.

Site ID	Land Use	Boring Depth	Maximum Nitrate-N, lb/ac-ft	Average Nitrate-N lb/ac-ft	Total Nitrate- N lb/ac
RDS001	Dryland Soybeans	35	18	8	289
RDS002	Range, Pasture, Grass	40	4	4	144
RDS003	Range, Pasture, Grass	45	18	8	343
RDS004A	Range, Pasture, Grass	48	11	5	225
RDS004B	Range, Pasture, Grass	35	7	4	144
RDS005	Range, Pasture, Grass	35	7	4	144
RDS006	Dryland Soybeans	55	18	11	595
RDS007	Dryland Corn	40	32	18	740
RDS008	Woodland	35	4	4	126
RDS009A	Dryland Soybeans	45	18	8	361
RDS009B	Dryland Soybeans	25	87	30	740
RDS010	Range, Pasture, Grass	64	213	72	4618

Table 7. Summary of Nitrate Results for Deep Soil Borings with Land Use Categories


Note: RDS010 box plot has the third quartile value of 152 lb/ac-ft and maximum value of 213 lb/ac-ft. Y-axis is capped at 90 lb/ac-ft for optimum visibility of other data.

5.3.3 Direct Push Groundwater Samples

Groundwater samples were collected at eight of the twelve direct push boring locations. Direct push groundwater results varied from a non-detect at less than 0.2 mg/L at location RGW005 to 25.6 mg/L at RGW003 as shown in Table 8. Figure 11 illustrates the distribution of the direct push groundwater sample results. Appendix C contains the laboratory results for the direct push groundwater samples. The nitrate-N results in groundwater were variable. Two of the eight groundwater samples collected exceeded the recommended groundwater nitrate-N limit of 10 mg/L MCL, and three locations were below 1 mg/L. The highest groundwater nitrate-N concentration was sampled within a grassland, which is an unexpected result.

Sample Location	Туре	Sample Interval	Nitrate (mg/L)	Land Use at Time of Sampling
RGW001	Direct Push	35	4.58	Dryland Soybeans
RGW002	Direct Push	40	0.99	Range, Pasture, Grass
RGW003	Direct Push	45	25.6	Range, Pasture, Grass
RGW005	Direct Push	35	< 0.2	Range, Pasture, Grass
RGW006	Direct Push	55	1.19	Dryland Soybeans
RGW007	Direct Push	40	0.29	Dryland Corn
RGW008	Direct Push	35	2.97	Woodland
RGW009B	Direct Push	25	12.3	Dryland Soybeans

 Table 8.
 Raymond CWSPA - Direct Push Groundwater Sample Results

5.3.4 Evaluation

In this section, shallow and deep soil sampling results were analyzed to assess nitrate-N loading found within the Ashland CWSPA. Shallow soil samples account for spatial variability within the site and deep soil samples account for vertical stratification of nitrate-N below the root zone. The following is a discussion of key findings regarding the shallow and deep soil nitrate-N loading found within the Raymond CWSPA.

Overall nitrate-N trends:

- Of the 12 deep soil sampling locations, six deep samples were collected in range, pasture, grass land use sites. One sample was collected in a woodland land use site. The remaining five were categorized as cultivated cropland (corn and soybeans) land use sites. There were no irrigated sites.
- Several sites had low variability in results within the vertical soil profile, such as for Sites 002 (RSS002), 003 (RSS003) 004 (RSS004, RDS004A, and RDS004B), 005 (RSS005 and RDS005) and 008 (RSS008 and RDS008). All of these sites are grassland, pasture, or woodland.
- Other sites had high variability in results within the vertical soil profile, such as for 001 (RDS001 and RSS001), 003 (RDS003), Site 006 (RDS006), 007 (RDS007), 009 (RDS009A and RDS009B), and 010 (RDS010). All these sites include cultivated cropland (corn and soybeans), except for site location 003 and 010 which are both grasslands. The sites listed with high variability are discussed individually in the key site-specific observations below.

Key site-specific evaluations:

- The results for dryland soybeans at Sites 001 and 006, deep borings, reported nitrate-N at and slightly above background levels, respectively. The average nitrate-N for Site 001 is 8 lb/ac-ft and Site 006 is 11 lb/ac-ft, and the maximum nitrate-N for both sites is 18 lb/ac-ft at 0-5' bgs and 15-20' bgs respectively. Shallow sampling for Site 001 indicated the same average and maximum nitrate-N as the deep boring. Shallow sampling was not performed on Site 006.
- Site 003 was a grassland site. Three consecutive intervals at this location were elevated from (30-45') for the deep boring. These depth intervals indicated above background nitrate-N levels ranging from 11 lb/ac-ft to 18 lb/ac-ft. In comparison, all nitrate-N samples collected from shallow soil samples were below background levels and ranged from 4 lb/ac-ft to 7 lb/ac-ft. The groundwater sample result from RDS003 measured at 25.6 mg/L. Boring logs from this location indicate the presence of moisture starting at 25 ft bgs. Moisture was found throughout the coring from 25 ft until groundwater was encountered at 45 ft bgs. This data suggests that the nitrate-N levels in the soil ranging

from 30 ft to 45 ft bgs were saturated enough with the aquifer and might have been influenced by the nitrate-N levels in the groundwater at this location.

- The results for grassland at Site 010, a deep boring, indicated highly elevated nitrate-N results throughout the soil profile. The average nitrate-N was 72 lb/ac-ft and the maximum nitrate-N was 213 lb/ac-ft at 25-30' bgs. Samples at four depths ranging from 20' to 40' bgs were particularly high. Shallow sampling was not performed on this site, therefore spatial variability of nitrates in the field is unknown. Additional sampling would be needed to assess the spatial variability of nitrate-N at this site. For the rest of this report, this site is considered as an outlier for this dataset, to avoid skewing the combined results and conclusions.
- The results for dryland corn at Site 007, a deep boring, reported nitrate-N above background levels and was noticeably higher than several dryland soybeans sites. The average nitrate-N was 18 lb/ac-ft and the maximum nitrate-N was 32 lb/ac-ft at 10-15' bgs. However, the results highly varied throughout the boring. Shallow sampling was not performed on this site, therefore spatial variability of nitrates in the field is unknown. Land use on this site likely changes year to year.
- The results for dryland soybeans at Site 009AB, deep borings, reported nitrate-N above background levels. The average nitrate-N for Site 009A is 8 lb/ac-ft and for Site 009B is 30 lb/ac-ft. The maximum nitrate-N for Site 009A is 18 lb/ac-ft at 10-15' bgs and for Site 009B is 87 lb/ac-ft at 0-5' bgs. The groundwater sample at 009B measured 12.3 mg/L. Groundwater sample was not collected at 009A. Several shallow soil samples reported above background nitrate-N levels, with the location RSS009-04 reporting highest concentrations of 22 and 25 lb/ac-ft in 9-12' and 12-15' intervals, respectively.

5.4 QA/QC SAMPLES

Quality assurance and quality control samples were collected throughout the Raymond CWSPA for deep and shallow soil samples. QA/QC samples were collected at a 5% ratio of all planned soil samples. The greatest percent difference was found at five separate intervals with a 67% difference between samples. As reference, QA/QC data is considered agreeable up to 50% difference. The five sample pairs had the same relationship, each parent sample was 1 ppm and the duplicate was 2 ppm. A review of the data suggests that the five intervals sampled at 67% difference is not considered to be unacceptable though exceeds the range. The values reported are below background levels. Low percent differences for the paired samples indicate that the soil cores (deep and shallow) were adequately composited in the field to obtain representative soil samples of the sampled interval. For the intent and purpose of this study, this data is considered agreeable. Table 8 shows the summary of the QA/QC relationships for shallow and deep soil samples.

Matrix	Sample Parent ID	Parent Results, ppm	Duplicate ID	Duplicate Results, ppm	Percent Difference
Soil	RSS001-01-06	1	DUP-2	1	0
Soil	RSS001-04-09	1	DUP-3	1	0
Soil	RSS003-05-06	1	DUP-5	1	0
Soil	RSS003-05-06	1	DUP 7	1	0
Soil	RSS004-05-15	1	DUP-4	1	0
Soil	RSS008-01-03	1	DUP 6	1	0
Soil	RSS008-01-03	1	DUP-8	1	0
Soil	RSS009-03-03	3	DUP-1	3	0
Soil	RDS001-25	2	DSDUP-9	3	40
Soil	RDS003-15	1	DSDUP-13	2	67
Soil	RDS003-40	4	DSDUP-14	6	40
Soil	RDS004A-25	3	DSDUP-10	3	0
Soil	RDS004B-35	1	DSDUP-11	2	67
Soil	RDS005-20	1	DSDUP-15	2	67
Soil	RDS006-10	3	DSDUP-12	3	0
Soil	RDS008-30	1	DSDUP-16	2	67
Soil	RDS009A-45	1	DSDUP-8	2	67
Soil	RDS010-15	2	DSDUP-17	2	0

Table 9. QA/QC Sample Percent Differences

5.5 GROUNDWATER MONITORING WELL RESULTS

This section presents the nitrate-N results for groundwater samples collected in the installed monitoring wells as part of the Raymond nitrate-N verification study. Figure 11 shows the monitoring well sampling locations and concentrations of nitrate-N.

5.5.1 Monitoring Well Groundwater Samples

Groundwater samples were collected by the LPSNRD on December 8, 2021. Monitoring Well 1 (RMW-1) is located near north of the public supply wells on Northwest 40th Street. RMW-2 is located near the northern CWSPA boundary on West Branched Oak Road. RMW-3 is located east of the Village on West Raymond Road. Nitrate results from each well can be found in Table 10 and are shown in Figure 11.

Well ID	Well Name	Sample Date	Nitrate mg/L
268113	RMW-1	12/8/2021	5.3
268119	RMW-2	12/8/2021	0.41
268123	RMW-3	12/8/2021	4.13

Table 10.	Monitoring	Well	Groundwater Results
-----------	------------	------	----------------------------

5.6 NITRATE-N AND LAND USE

The current (2020) land use was recorded for each sample location at each site. Nitrate-N loading by land use is presented in Table 11. The table summarizes the number of sites and samples collected for each land use category and the maximum and average nitrate-N results.

Land Use	# of Deep Sites	Deep Soil Maximum Nitrate lb/ac-ft	Deep Soil Average Nitrate- N lb/ac- ft	# of Shallow Sites	Shallow Soil Maximum Nitrate Ib/ac-ft	Shallow Soil Average Nitrate- N lb/ac- ft
Dryland Corn	1	32	18	-	-	-
Dryland Soybeans	4	87	12	2	25	9
Range, Pasture, Grass	5	18	5	3	7	4
Woodland	1	4	4	1	4	4

Table 11.	Nitrate-N L	loading in	Soils by]	Land Use
-----------	-------------	------------	------------	----------

* The Range Pasture Grass group does not include results for site 010 as it was believed to be an outlier in this dataset. Discussion in included in section 5.3.4.

5.6.1 Dryland Corn/Soybeans

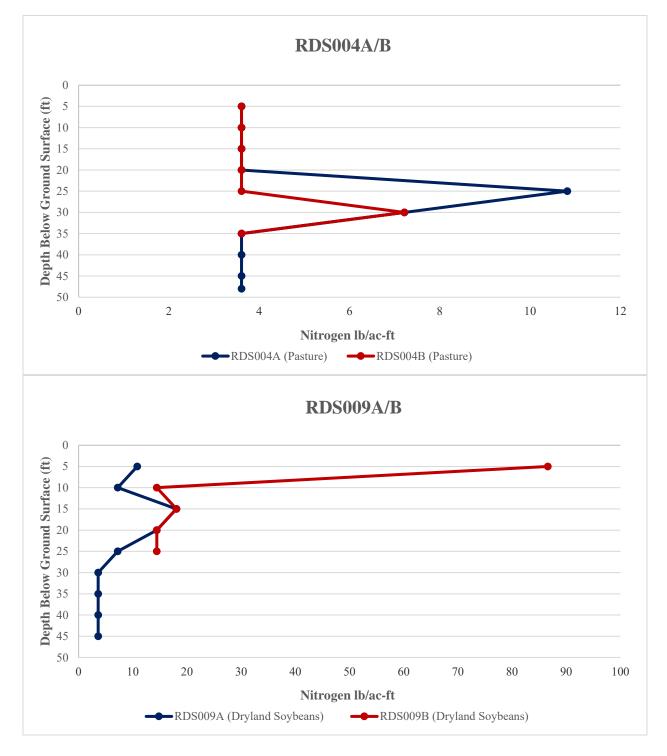
All cropland sites where soil samples were collected used dryland farming techniques. Many of the average nitrate-N levels are elevated and surpass the 8 lb/ac-ft background nitrate average concentration for soils. It is generally expected that agriculture management includes crop rotation and planted crops most likely change from year to year. The land use listed in Table 11 is the land use observed during the 2020 field investigation and is a snapshot of land use at time of sampling.

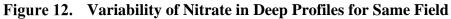
For the shallow soil sampling, the dryland soybeans had above background maximum and average nitrate-N levels. No shallow samples were collected in dryland corn land use.

In deep soil borings, dryland soybeans had a higher maximum nitrate-N level than dryland corn. The maximum nitrate-N in dryland soybeans was 87 lb/ac-ft sampled at the first 5 ft interval. Dryland corn had an overall higher average nitrate-N level than dryland soybeans. This is expected within the root zone due to seasonal impacts of the different crops but was also exhibited to a lesser extent below the root zone. One of the direct push groundwater samples was 12.3 mg/L, exceeding the 10 mg/L MCL.

With elevated levels of nitrate-N present below the root zone in the shallow and deep samples, it is evident that the cropland is contributing as a non-point source to the elevated nitrate-N levels in groundwater within the CWSPA.

5.6.2 Range Pasture and Grass

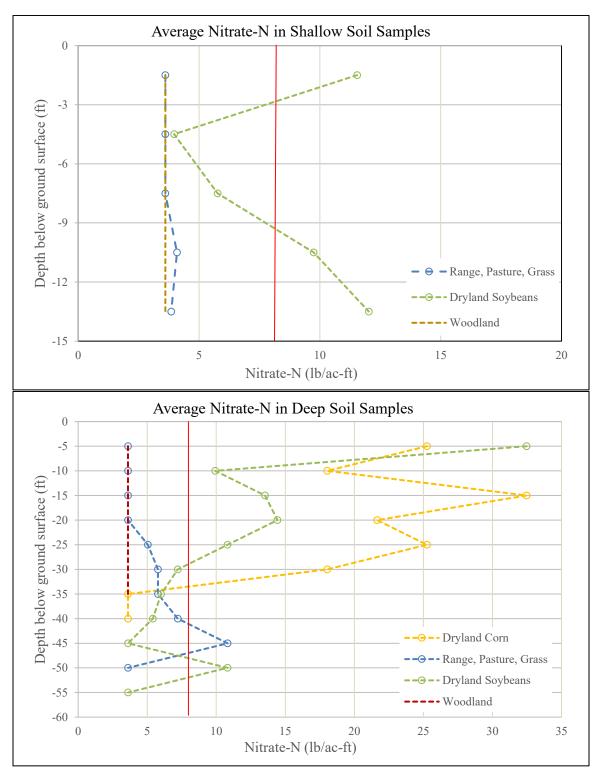

Six samples were collected from range pasture and grassland sites. Four grassland sites were comprised of both maintained and unmaintained native grasses. One horse pasture was sampled in two locations. One sample location (Site 010) had unusually high results, was considered an outlier, and was considered separately later in this section.


The average nitrate concentrations reported in remaining deep and shallow soil samples are 5 lb/ac-ft and 4 lb/ac-ft respectively. The maximum nitrate-N concentrations in deep and shallow soils are 18 lb/ac-ft and 7 lb/ac-ft respectively. The maximum concentration was reported at RDS003 in the last deep soil interval of 40-45 ft. The highest groundwater sample nitrate-N within the range pasture grass land uses was 25.6 mg/L and it was collected at the deepest interval of RDS003. The deep soil nitrate-N at this location was likely impacted by the high levels of nitrate-N in groundwater at this site. This trend suggests that nitrate-N has impacted the groundwater under this area and may not be the result of vertical leaching through the vadose zone. It is likely that the nitrate-N in groundwater comes from an upgradient source.

As noted in Section 5.3.4, Site 010 had unusually high concentrations and is therefore discussed separately. The maximum nitrate-N concentrations at this site in deep soils were reported to be 213 lb/ac-ft and an average of 72 lb/ac-ft.

5.6.3 Nitrate Variability Within the Same Field

It is important to note that the results can vary when comparing deep soil nitrate profiles from within the same field. Shallow soil samples are collected to account for the nitrate-N variability across the site. In some cases, two deep soil samples are collected within the same field. Within the Raymond CWSPA, two sampling sites included two deep borings per site. The land use was the same for each pair. The soil profiles for each pair of samples can be seen in Figure 12.



5.6.4 Average Nitrate by Land Use

The shallow soil sampling results were generally higher for dryland soybean land use compared to range, pasture, grass and woodland land uses. The average shallow soil sampling results for each depth by land use is illustrated in Figure 13.

The deep soil sampling results indicated that there are higher average nitrate-N concentrations under sites with crop land uses than sites with range, pasture, and grass land uses, as shown in Figure 13. Site 010 was considered an outlier and not included in averages.

The results indicate that dryland row crops, corn, or soybean sites, had nitrate-N values that were at or exceeded background nitrate-N concentrations and appear to be a non-point source of nitrate loading. At the time of sampling, higher levels of nitrate-N were found in samples collected from dryland corn than from dryland soybeans, but this can be variable from year to year.

6. CONCLUSIONS

6.1 LEACHABLE NITRATE-N IN SOIL

Data gathered from soil samples collected during this investigation provided the following conclusions regarding leachable nitrate-N in shallow and deep soils.

6.1.1 Shallow Soil Samples

For this investigation, 149 shallow soil samples were collected to a depth of 15 ft at 3 ft intervals and analyzed for nitrate-N from 6 sampling sites.

The number of soil samples found to have elevated nitrate-N concentrations was relatively low compared to similar investigations. Across all land use types, a total of 11 of the 150 samples (7%) collected from below the root zone had levels of nitrate-N above background levels. Even though this is comparatively low, the shallow soil sample results still indicate that some non-point source leaching of nitrate-N from agricultural sources is occurring within the study area. Across the locations with dryland crops, a total of 19 of the 49 samples (39%) were identified as having nitrate-N above background levels of 8 lb/ac-ft. Across remaining land uses-range, pasture, grass, and a woodland, there were no elevated nitrate-N above 8 lb/ac-ft.

6.1.2 Deep Soil Samples

For this investigation, 101 deep soil samples were collected at 5 ft intervals from twelve direct push sampling sites. Deep soil samples were collected from pasture, range, and grass areas and in dryland corn and soybean fields. Samples were collected in depths ranging up to 64 ft bgs.

Deep soil sample results clearly show that non-point source leaching of nitrate-N from agricultural sources is occuring. The average concentrations below from cropland was found to be higher than typical range pasture and grass land uses. A total of 24 of the 40 (60%) samples collected from dryland corn and soybean areas had elevated nitrate-N levels above background levels.

One site location, RDS010 reported unexpectedly high levels of nitrate-N throughout the entire boring, except at interval 10 ft bgs. The average nitrate-N throughout the 64 ft boring was 72 lb/ac-ft. The maximum nitrate-N reported was significantly elevated at 213 lb/ac-ft collected at 30 ft bgs. It is unknown if elevated nitrate-N exists throughout the remainder of the field at this site. RDS010 was located to the east of the Village of Raymond. Shallow soil samples and a groundwater sample was not collected at this location. Additional investigation would be needed to clearly determine if this is due to a point source or non-point source.

6.2 NITRATE-N IN GROUNDWATER

Groundwater samples were collected from direct push borings. Groundwater monitoring well sampling results were provided by the LPSNRD. Historical nitrate-N data for the Village of Raymond municipal wells was available from the NDHHS for the years 2003 to 2018.

Direct Push Sampling

Direct push groundwater samples were collected from eight of the twelve locations. Groundwater samples were collected from the maximum depth of the boring, typically 20-55 ft bgs. Nitrate-N was reported in each of the direct push groundwater samples at concentration ranging from a non-detect less than 0.2 mg/L to 25.6 mg/L. The direct push results were highly variable but indicate the presence of elevated nitrate-N in groundwater within the Raymond CWSPA.

Municipal Well Sampling

As described in previous sections, two wells have reached the 50% MCL of 5.0 mg/L nitrate-N most recently during 2018 sampling. Data from the collected samples over time indicate that nitrate-N is fluctuating, but generally staying between 3 and 6 mg/L.

Monitoring Well Sampling

The three new monitoring wells were sampled for the first time in December 2021. Initially, the monitoring wells will be sampled on a quarterly basis by the LPSNRD. The groundwater samples collected from the monitoring wells reported nitrate-N at 5.3 mg/L, 0.41 mg/L, and 4.13 mg/L, from wells RMW-1, RMW-2, and RMW-3, respectively. The results for RMW-1 and RMW-3 are in a similar range as the historical sampling results from the municipal wells.

Results from future sampling events from the monitoring wells should be reviewed for trends. If the monitoring wells results are similar, additional investigation may be needed to better define groundwater flow direction, particularly from north and west of the municipal wells.

6.3 NITRATE LOADING BY LAND USE

The shallow and deep soil sampling results indicated that there are higher average nitrate-N concentrations under sites with crop land uses than sites with range, pasture, and grass and woodland land uses, as shown in Figure 13.

Sites where the land use was range, pasture or grass, the vadose zone soil nitrate-N levels were found to be below background or generally near background levels through the entire profile with the exception of site RDS010 and RDS003. Elevated nitrate-N was found throughout the entire boring of RDS010, and within the last three intervals before groundwater in RDS003. In general, range, pasture, and grass does not appear to be a significant contributor to nitrate-N concentrations within the CWSPA. RDS010 is an exception and discussed separately in Section 6.5.

6.4 SOURCES OF NITRATE-N

The results generally indicate that the source of nitrate-N in groundwater samples collected is likely due to application of commercial fertilizer or manure on cropland. No evidence from the point source investigation was found to indicate the source of elevated nitrate-N was sourced from events such as industrial processes, leakage from an industrial or municipal wastewater site, or large spills within the Raymond CWSPA.

6.5 DATA GAP

A data gap was identified regarding the area east of the Village of Raymond directly southwest of the municipal wells. Unexpected results were found in one deep soil boring collected at RDS010 in grassland land use. Results averaged 72 lb/ac-ft throughout the boring, and the maximum nitrate-N reported was 212.9 lb/ac-ft. No shallow soil samples were taken at this location and refusal was reached before groundwater; therefore, a groundwater sample was not collected at this location. There are no point sources that were identified at the time of the study, and it is unknown if non-point sources influenced the high nitrate-N at this site. The sparsity of data in this location renders the results inconclusive. Additional investigation would be needed to determine if the source of nitrate-N at RDS010 is from a point source or from non-point source.

6.6 FUTURE LEACHING POTENTIAL

There is leachable nitrate-N in the soil and subsoil within the Raymond CWSPA and a potential for nitrate-N to be leached every year from the subsoil into the groundwater. Little can be done to prevent the existing nitrate-N from continuing to be transported downward by water draining from the root zone and eventually entering the groundwater system. Changes to management practices have potential to reduce the addition of future nitrate loading to the vadose zone.

The LPSNRD has rules and regulations in place that help mitigate nitrate-N using a stepwise approach (Levels or Phases), with different requirements depending on the Level/Phase designation. Nitrate management practices required by the NRDs are generally focused on the education and training of the producer, fertilizer application requirements, and reporting. Due to the time it takes for nitrogen to migrate through the soil, it often takes years for management practices to substantially affect nitrogen concentrations. Effective nitrogen strategies and monitoring consider the delayed responses between management actions and measurable differences. Future monitoring should consider these delays, with a time series of measurements to determine the effects of chosen management on soil and groundwater levels.

EA Engineering, Science, and Technology, Inc., PBC

7. REFERENCES

Array Environmental, Inc. RBCA Tier 1 Site Assessment. 17 November 2009.

Array Environmental, Inc. Groundwater Sampling Monitoring Report. 7 September 2018.

- Divine, D. P, 2014. The Groundwater Atlas of Lancaster County, Nebraska, Resource Atlas No.7. *Conservation and Survey Division, University of Nebraska-Lincoln.*
- Druliner, A.D., and Mason, J.P. 1994. Hydrogeology and Water Quality of Five Principal Aquifers in the Lower Platte South Natural Resources District, Eastern Nebraska, 1994. *Water Resources Investigations Report* 00-4155: 2.
- EA Engineering, Science, & Technology, Inc., PBC (EA). 2020. Work Plan, Nitrate Studies for Two Community Water Systems, Raymond and Ashland, Nebraska, Lower Platte South Natural Resources District. July 2020. Final.
- Exner, M. E., Hirsh A.J., and Spalding R.F. 2014. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland. *Water Resources. Res.*: 50, 4474–4489, doi:10.1002/2013WR015073.
- Lower Platte South Natural Resources District (LPSNRD). 2020. Ground Water Management Plan. Accessed via World-Wide web at: <u>https://lpsnrd.org/sites/default/files/files/89/ground_water_rrs_2020_final.pdf</u>
- Nebraska Department of Health and Human Services (NDHHS). 2005. *Title 178, Chapter 12, Water Well Construction, Pump Installation, and Water Well Decommissioning Standards*. February.
- NDHHS. 2018. Safe Drinking Water Information System. Accessed via World-Wide web at: http://apps.dhhs.ne.gov
- Scherer, Thomas F. and Steele, Dean D. 2019. Irrigation Scheduling by the Checkbook Method. Figure 1. North Dakota State University. Page 4.
- Spalding, R.F., and Exner, M.E. 1993. Occurrence of Nitrate-N in Groundwater A review. Journal of Environmental Quality. 22: 392-402.
- U.S. Environmental Protection Agency (EPA). 2007. Wellhead Analytical Element Model. Accessed via World-Wide web at: <u>http://www.epa.gov</u>
- Young, A.R., Korus, J.T., Howard, L.M., Waszgis, M.M., 2016. Surficial Geology of the Raymond 7.5 Minute Quadrangle. Conservation and Survey Division, School of Natural Resources, University of Nebraska-Lincoln.

Appendix A

WhAEM Model Review and Data Sheets

This page intentionally left blank

24 January 2020

MEMORANDUM

TO:	Dick Ehrman	LOCATION:	LPSNRD-Lincoln
FROM:	Dale Schlautman	LOCATION:	EA-Lincoln
SUBJECT:	LPSNRD – Nitrate Study for Raymon Review of Existing WhAEM Results	d, Nebraska	

EA Project No. 63332.02

PURPOSE

The purpose of this memorandum is to document EA Engineering, Science and Technology PBC's (EA's) review of the existing groundwater models developed by the Nebraska Department of Environment and Energy (NDEE) to estimate the 20-year capture zones for the community well fields. This review is a desktop review limited to the information (model files and supporting information) provided by NDEE .

GENERAL

Model Description

The groundwater models were developed by the NDEE based on readily available information. The model used is the U.S. Environmental Protection Agency's (EPA's) Wellhead Analytic Element Model (WhAEM).

WhAEM is a public domain, ground-water flow model designed to facilitate capture zone delineation and protection area mapping intended to support the State's Wellhead Protection Programs (WHPP) and Source Water Assessment Planning (SWAP) for public water supplies in the United States. WhAEM provides an interactive computer environment for design of protection areas based on radius methods, well in uniform flow solutions, and geohydrologic modeling methods. Geohydrologic modeling for steady pumping wells, including the influence of hydrological boundaries, such as rivers, recharge, and no-flow contacts, is accomplished using the analytic element method.

The newest version of the model (Version 3.3.2) was downloaded from the EPA's website. Copies of the modeling results and limited supporting documentation were obtained from the NDEE for Raymond along with electronic model files. Additional supporting information was also requested from NDEE. EA loaded the electronic files into WhAEM to evaluate the assumptions used to determine the 20-year capture zones.

Model Development

The following are some general observations regarding the development of the model for Raymond.

<u>Boundary/Gradient Conditions</u> – The model allows the use of wells, line sinks, barriers and uniform flow to establish boundary conditions and groundwater gradient. The conditions used for each community were site specific.

<u>Aquifer Thickness</u> – The aquifer thickness for Raymond was calculated using a custom spreadsheet called the 'K Wizard'. A copy of the K Wizard spreadsheet was provided by NDEE. The spreadsheet calculated the average aquifer thickness of three wells in the Raymond area. The aquifer thickness for each well was the total drilling depth. This does not appear to be a reasonable approximation of the aquifer thickness.

<u>Hydraulic Conductivity (K)</u> – Values for K for Raymond were estimated using a custom spreadsheet called the 'K Wizard'. Information from bore logs is entered into the spreadsheet to determine K based on bore log descriptions, and formation thickness based on bore log intervals. A composite transmissivity was calculated using all of the formations below static water level. The aquifer thickness was an 'average' K assigned by dividing the transmissivity by the aquifer thickness.

Porosity – It is unknown how porosity was determined for this site.

<u>Calibration</u> – It does not appear that any model calibration procedures were conducted, likely due to the limited information available.

RAYMOND RESULTS

The model was last updated in April 2005 by NDEE.

Key Site-Specific Assumptions

<u>Boundary/Gradient Conditions</u> – Static water levels were established using a constant gradient and static water levels from wells. Flow is controlled mostly by the static water levels from the wells. Water levels in the model generally seemed reasonable when compared to the regional water level map.

Wells – The model was developed based on 3 production wells.

- Well G-084063 (Well 1)
 - Registered capacity = 80 gallons per minute (gpm)
 - o Model rate = 4.2 gpm

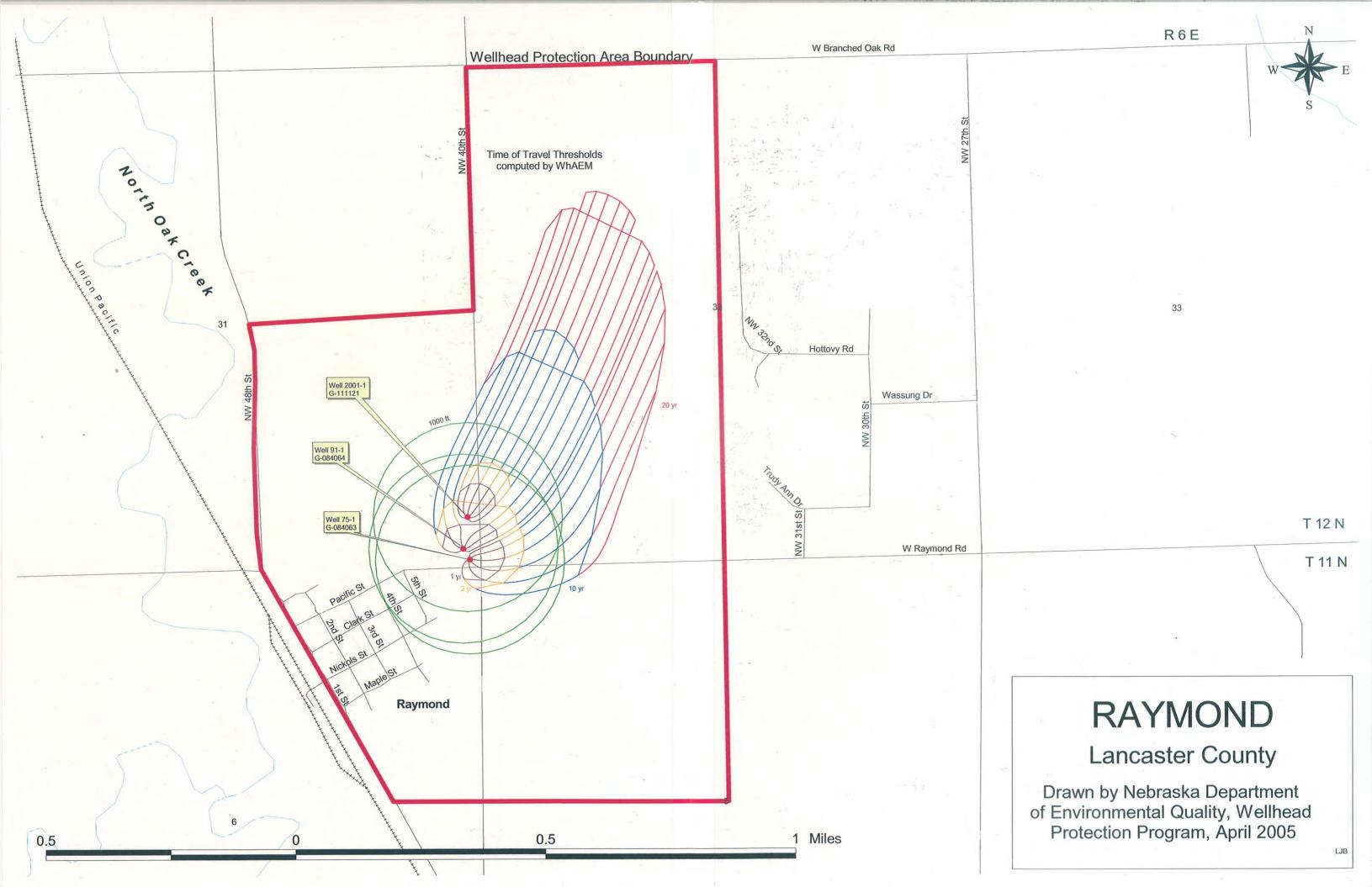
- Well G-084064 (Well 2)
 - \circ Registered capacity = 80 gpm
 - \circ Model rate = 4.2 gpm
- Well G-111121 (Well 3)
 - \circ Registered capacity = 60 gpm
 - \circ Model rate = 4.2 gpm

<u>Base of Aquifer Elevation</u> – The model used a base of aquifer elevation of 1170 feet. This value appears to be reasonable.

<u>Aquifer Thickness</u> – The model used an aquifer thickness of 112 feet and appears to be based on the average aquifer thickness from the three production well logs. The aquifer thickness of each well is the total drilling depth, thus the model aquifer thickness is likely greater than the actual aquifer thickness.

<u>Hydraulic Conductivity (K)</u> – The model used a K of 8 feet/day for the aquifer and the K value appears to be based on the K-Wizard. The well logs specified that the aquifer is silty clay mixed with fine sand. According to Table 3.2.1 of Groundwater Hydrology (Todd, 1980), representative K values are 0.00065 feet/day for clay, 0.26 feet/day for silt, and 8.2 feet/day for fine sand. Therefore, the K value of 8 feet/day appears to be a higher estimate of hydraulic conductivity, but not unreasonably high.

<u>Porosity</u> – The model used a porosity of 0.07 for the aquifer. This is the minimum porosity for silty gravels/silty sandy gravels and clayey sands. According to Swiss Standard SN 670 010b and Advanced Soil Mechanics (Das 2008), porosity in silty clay ranges from 0.29 to 0.41, and porosity in fine sand ranges from 0.29 to 0.46, but utilizing a lower porosity value generates a more conservative estimate of the wellhead protection area by lengthening the capture zone.


Conclusions

Based on this review the following conclusions are presented:

- The assumptions used to determine the 20-year capture zone appear to be reasonable. While porosity seems to be low, it yields a more conservative capture zone analysis.
- The model likely has an overestimated aquifer thickness. This is unlikely to greatly affect the results of the model.

If you have any questions or require additional information, please do not hesitate to contact me at 402-476-3766.

DS/dm

Appendix B

Monitoring Well Construction Forms and Boring Logs

This page intentionally left blank

					, INC., PBC				ORING	200
PROJ			- 2 Commu		BORING DEPTH: 35 ft	BORING N		RDS		
	OJECT		6333202		SURFACE ELEV: 1,281.00	DATE DRIL			0/2020	
	ING CO.		ns Environi	mental	NORTHING: 4536853.67	BORING M			DPT	
DRILL			ason A.		EASTING: 687699.76	TYPE OF S	URFACE:	Soy	/bean Field	ł
	OGIST:		Travis H.		DEPTH TO WATER: 31 ft					
DEP.	ELEV	WELL		USCS		SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR3/4	ML	Silt, dark yellowish brown, med to high stiffness, dry to moist, root traces	DPT	60	100		
5	1276.0					DPT	60	100		
			10YR4/6	CL	Silty clay, dark yellowish brown, med to high stiffness, moist to wet, trace very fine sand	-				
10	1271.0				Same as previous	DPT	60	100		
15	1266.0				Same as previous	DPT	60	100		
			10YR6/3	CL	Sandy clay, pale brown, low to med stiffness, moist to wet, very fine to fine sand grains					
20	1261.0				Same as previous	DPT	60	100		
			10YR6/3	SP	Clayey sand, pale brown, med to high density, moist to wet, very fine to fine sand grains	-				
25	1256.0				-					

					, Inc., PBC					ORING	200
PROJ			- 2 Commu			35 ft	BORING NO		RDS		
	OJECT #		6333202		SURFACE ELEV:	1,281.00	DATE DRIL			0/2020	
	ING CO.		ns Environ	mental		36853.67	BORING M			DPT	
DRILL			ason A.			7699.76	TYPE OF S	URFACE:	Soy	/bean Field	
	OGIST:		Travis H.		DEPTH TO WATER:	31 ft	 			1	
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESC	CRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10/0="	05	Cond base of the	high density	DPT	60	100		
			10YR5/3	SP	Sand, brown, med to						
-					wet to saturated, very fi trace of cla						
						ay					
30	1251.0										
					Same as prev	vious	DPT	60	100		
-											
35	1246.0										
					Bottom of Hole	2 35 feet			0		
40	1241.0										
									0		
-											
45	1236.0										
	1200.0								0		
									ý		
	1001 0										
50	1231.0										

					, IIIC., FBC					URING	
PROJE			- 2 Commu		BORING DEPTH:	40 ft	BORING N		RDS		
	OJECT		6333202		SURFACE ELEV:	1,235.00	DATE DRIL			2/2020	
	ING CO.		ns Environi	mental	NORTHING:	4536332.00	BORING M			DPT	
DRILL			ason A.		EASTING:	687125.47	TYPE OF S	URFACE:	Main	tained gras	SS
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	39 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR3/3	ML	Silt, dark brown	, med to high stiff,	DPT	48	80		
					dry to moi	st, root traces					
			10YR4/6	ML		llowish brown, med to					
5	1230.0				high stiff, dry	to moist, trace of					
					fine g	ravel / till	DPT	60	100		
_			10YR5/6	CL		h brown, low to med					
10	1225.0				stiff, m	oist to wet					
_							DPT	60	100		
_											
_											
_											
			10YR4/4		Sandy silty clay	lark yellowish brown,					
15	1220.0		101R4/4	CL		iff, moist to wet,					
15	1220.0					fine to coarse	DPT	60	100		
_					sanu grains		DFT	00	100		
-											
-											
20	1215.0										
					Same a	as previous	DPT	60	100		
25	1210.0										

					, INC., PBC					ORING	100
PROJ			- 2 Commı		BORING DEPTH:	40 ft	BORING N		RDS		
	OJECT		6333202		SURFACE ELEV:	1,235.00	DATE DRIL			2/2020	
DRILL	ING CO.	: Plaii	ns Environ	mental	NORTHING:	4536332.00	BORING M	ETHOD:		DPT	
DRILL		J	ason A.		EASTING:	687125.47	TYPE OF S	URFACE:	Main	tained gras	SS
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	39 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same a	s previous	DPT	60	100		
30	1205.0										
					Same a	s previous	DPT	60	100		
35	1200.0										
					Same a	s previous	DPT	60	100		
						•					
			10YR4/4	SW	Sand, dark yellowi	sh brown, dense, wet					
40	1195.0					e to coarse grains					
						lole @ 40 feet			0		
1											
45	1190.0										
									0		
1											
50	1185.0										
here and											

					, INC., PBC					ORING	200
PROJE			- 2 Commı		BORING DEPTH:	45 ft	BORING NO		RDS		
	OJECT	-	6333202		SURFACE ELEV:	1,288.00	DATE DRIL			1/2020	
	ING CO.		ns Environ	mental	NORTHING:	4537645.54	BORING M			DPT	
DRILL			ason A.		EASTING:	687434.16	TYPE OF S	URFACE:	Maintain	ed brome	grass
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	37 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR4/3	ML		high stiff, dry to moist, traces	DPT	48	80		
5	1283.0				Same a	s previous	DPT	48	80		
10	1278.0				075-01-01-01-01-01-01-01-01-01-01-01-01-01-		DPT	60	100		
			10YR6/3	CL	dry to moist, dec	wn, med to high stiff, reasing silt content n depth					
15	1273.0				Same as previo	us, low to med stiff	DPT	48	80		
20	1268.0										
					Same a	IS previous	DPT	36	60		
25	1263.0										

_								-		URING	200
PROJ			- 2 Commu		BORING DEPTH:	45 ft	BORING N		RDS		
	OJECT #		6333202		SURFACE ELEV:	1,288.00	DATE DRIL			1/2020	
	ING CO.		ns Environi	mental	NORTHING:	4537645.54	BORING M			DPT	
DRILL			ason A.		EASTING:	687434.16	TYPE OF S	URFACE:	Maintain	ed brome	grass
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	37 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as prev	ious, moist to wet	DPT	60	100		
30	1258.0										
							DPT	60	100		
			40)/DE/0	CL	Conducailte alour	grayish brown, low to					
			10YR5/2	CL		moist to wet					
					med sun,	moist to wet					
-											
35	1253.0		10YR6/2	SP	Clavev sand, light	brownish gray, low to					
			1011(0/2	01		o saturated, very fine	DPT	60	100		
						d grains					
						0					
40	1248.0										
					Same as pre	evious, saturated	DPT	60	100		
-											
-											
-											
-											
45	1243.0										
H					Bottom of	Hole @ 45 feet	1		0		
-									-		
-											
$ \neg $											
1											
1											
50	1238.0										

					, INC., PBC					ORING	LUU
PROJ			- 2 Commu		BORING DEPTH:	48 ft	BORING N		RDS		
	OJECT	-	6333202		SURFACE ELEV:	1,327.00	DATE DRIL			0/2020	
	ING CO.	-	ns Environi	mental	NORTHING:	4537917.73	BORING M			DPT	
DRILL			ason A.		EASTING:	687617.60	TYPE OF S	URFACE:		orbes / gra	sses
	OGIST:		Travis H.		DEPTH TO WATER:	N/A (Refusal)				pasture)	
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	
(FT)	(FT)	CONST.	COLOR			DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR5/1	ML		to high stiffness,	DPT	36	60		
					ary to slightly r	noist, root traces					
-											
5	1322.0										
							DPT	48	80		
			10YR5/1	ML		ned to high stiffness,					
					dry te	o moist					
10 -	1017.0										
10	1317.0						DDT	60	100		
							DPT	60	100		
			10YR3/4	CL	Silty clay, dark yell	owish brown, med to					
						st, iron staining, trace					
					grav	vel / till					
15	1312.0										
							DPT	60	100		
			10/04/0	C'	Clay (till) dark va	llowich brown high	-				
-			10YR4/6	CL		llowish brown, high l, moist, traces of					
-						ls / gravels					
-						o, giuroio					
20	1307.0										
					Same a	s previous	DPT	60	100		
1											
$ \square$											
25	1302.0										

					, INC., PBC					ORING	200
PROJE			- 2 Commu		BORING DEPTH:	48 ft	BORING N		RDS		
EA PR	OJECT #	#:	6333202	2	SURFACE ELEV:	1,327.00	DATE DRIL	LED:	12/1	0/2020	
DRILL	ING CO.	: Plaii	ns Environi	mental	NORTHING:	4537917.73	BORING M	ETHOD:		DPT	
DRILL	ER:	J	ason A.		EASTING:	687617.60	TYPE OF S	URFACE:	Native f	orbes / gra	isses
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	N/A (Refusal)	1			pasture)	
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)		COLOR			DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
(,	()	••••••	OOLON								
_					Same as	previous	DPT	60	100		
30	1297.0										
					Same as	s previous	DPT	60	100		
35	1292.0										
					Same as	s previous	DPT	60	100		
40	1287.0										
10	1201.0				Same as	previous	DPT	60	100		
-					eanie ae	protiono	DII		100		
-											
-											
-											
4E -	1202.0										
45	1282.0				Some on results	von high atiffs	DOT	26	~~~		
						very high stiffness,	DPT	36	60		
					har	d, till					
						ole @ 48 feet					
					(Ref	usal)					
50	1277.0										

					, IIIC., PBC		-			ORING	LUU
PROJE			- 2 Commu		BORING DEPTH:	35 ft	BORING N		RDSC		
	OJECT		6333202		SURFACE ELEV:	1,315.00	DATE DRIL			0/2020	
	ING CO.		ns Environi	mental		4537456.46	BORING M			DPT	
DRILL			ason A.			687638.73	TYPE OF S	URFACE:	Natural fo	-	rasses
	OGIST:		Travis H.		DEPTH TO WATER:	N/A (Refusal)	 			e pasture)	
DEP.		WELL	00107	USCS CODE			SAMPLE		% RE-	Blow	
(FT)	(FT)	CONST.			GEOLOGIC D		METHOD	(IN.)	COVERY	Count	DATA
_			10YR4/4	ML		brown, med to high	DPT	36	60		
-					stiffness, dry	, 1001 11d005					
-											
5	1310.0		10YR5/4	ML		h brown, low to med					
					stiffness, c	Iry to moist	DPT	60	100		
$ $											
10	1305.0										
							DPT	60	100		
			10YR5/6	CL	Sandy clay, yellow	ish brown med to	-				
			1011(0/0	0L	high stiffness, moist,						
					-	ebbles / till					
						-					
15	1300.0										
							DPT	60	100		
			10YR5/8	SP	Clayey sand, yellow						
					high density, mois						
					sand	grains					
20	1295.0										
							DPT	60	100		
							4				
			10YR4/4	CL	Clay, dark yellowi						
						es of sand / gravel					
-					inclu	sions					
25	1290.0										
2J	1230.0										

					, INC., PBC					ORING	LUU
PROJE			- 2 Commu		BORING DEPTH:	35 ft	BORING N		RDSC		
	OJECT		6333202		SURFACE ELEV:	1,315.00	DATE DRIL			0/2020	
	ING CO.		ns Environi	mental	NORTHING:	4537456.46	BORING M	ETHOD:		DPT	
DRILL			ason A.		EASTING:	687638.73	TYPE OF S	URFACE:	Natural fo	rbes and g	rasses
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	N/A (Refusal)			(horse	e pasture)	
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC D	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as	previous	DPT	60	100		
30	1285.0										
					Same as previous,	high stiffness / hard	DPT	60	100		
_											
25	1280.0										
35	1280.0				Bottom of U	ole @ 35 feet			0		
						usal)			0		
I —					(Nei	usal)					
-											
—											
40	1275.0										
									0		
$ \square$											
	10-1-										
45	1270.0								c.		
									0		
-											
-											
-											
50	1265.0										
50	1200.0						1				

			-		, INC., PBC					ORING	200
PROJI			- 2 Commu		BORING DEPTH:	35 ft	BORING N		RDS		
	OJECT #	-	6333202		SURFACE ELEV:	1,277.00	DATE DRIL			2/2020	
	ING CO.	-	ns Environ	mental	NORTHING:	4536688.55	BORING M			DPT	
DRILL			ason A.		EASTING:	686848.00	TYPE OF S	URFACE:	Bro	ome grass	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	24 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR3/2	ML	Silt, very dark gra	ayish brown, med to	DPT	60	100		
					high stiff, dry to	moist, root traces					
5	1272.0										
_					Same a	s previous	DPT	60	100		
			10YR4/2	CL	Ciltural our dorte are	wich brown mode	-				
			101 R4/2	UL	Silty clay, dark grayish brown, med to high stiff, dry to moist, root traces						
_					nigh sun, dry to	moist, root traces					
10	1267.0										
10	1207.0				Same a	s previous	DPT	60	100		
_					Guine a	o previous		00	100		
15	1262.0		10YR4/4	CL	Clay, dark yellowis	h brown, med to high					
					stiff, moist to	wet, trace of till	DPT	60	100		
_											
			10YR4/6	SW		vellowish brown, med					
20	1257.0					moist to wet, fine					
					to coarse	sand grains	DPT	60	100		
25	1252.0										
	00										

				= -		-				URING	200
PROJ	-		- 2 Commu			5 ft	BORING NO		RDS		
	OJECT #		6333202			77.00	DATE DRIL			2/2020	
	ING CO.		ns Environ	mental	NORTHING: 4536688		BORING M			DPT	
DRILL	-		ason A.		EASTING: 686848.0		TYPE OF S	URFACE:	Bro	ome grass	
	OGIST:		Travis H.		DEPTH TO WATER:	24 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPT		METHOD	(IN.)	COVERY	Count	DATA
					Same as previous		DPT	60	100		
				<u>.</u>							
			10YR5/2	CL	Clay, grayish brown, med						
					stiff, moist to wet, trace till / ve	ry line sand					
30	1247.0										
					Same as previous		DPT	60	100		
				-	A A A A A A A A A A						
			10YR6/2	CL	Sandy clay, light brownish gra						
					high stiff, wet to saturated,	/ery fine					
35	1242.0				sand grains						
35	1242.0				Bottom of Hole @ 35 f	eet			0		
						CCI			0		
40	1237.0										
									0		
-											
-											
-											
-											
45	1232.0										
									0		
$ \square$											
-											
50 -	1227.0										
50	1221.0										

_					BORING DEPTH: 55 ft				BURING LO			
PROJ			- 2 Commu				BORING NO		RDS			
	OJECT	-	6333202		SURFACE ELEV:	1,299.00	DATE DRIL			1/2020		
	ING CO.		ns Environi	mental		4537311.17	BORING M			DPT		
DRILL			ason A.		EASTING:	687491.53	TYPE OF S	URFACE:	Soy	/bean Field	ł	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	48 ft						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
			10YR4/3	ML		I to high stiff, dry to root traces	DPT	60	100			
5	1294.0		10YR3/4	ML	Clayey silt, dark y	ellowish brown, med	DPT	60	100			
						stiff, moist						
10	1289.0		10YR5/2	CL	Clay, gravish bro	wn, low to med stiff,	DPT	60	100			
					n	noist						
	1284.0				Same as previous,	low stiff, moist to wet	DPT	60	100			
20	1279.0				Same a	IS previous	DPT	60	100			
25	1274.0											

			-		es BORING DEPTH: 55 ft				BORING LO			
PROJ	-		- 2 Commu			55 ft	BORING NO		RDS			
	OJECT		6333202		SURFACE ELEV:	1,299.00	DATE DRIL			1/2020		
	ING CO.	-	ns Environi	mental	NORTHING:	4537311.17	BORING M			DPT		
DRILL			ason A.		EASTING:	687491.53	TYPE OF S	URFACE:	Soy	/bean Field	1	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	48 ft						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC I	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
							DPT	60	100			
			10YR5/4	CL	Clay, yellowish brow	n, high stiff, moist to						
					wet, pebbles / s	and (till) present						
30	1269.0		10YR6/4	SP		ellowish brown, med						
						pist to wet, very fine	DPT	60	100			
					sand	grains						
_												
_												
35	1264.0											
35	1204.0				Same as n	revious, wet	DPT	60	100			
_					Same as p	levious, wet	DFI	00	100			
-												
-												
40	1259.0											
					Same as previous,	slightly higher clay	DPT	60	100			
					content							
45	1254.0											
					Same as previous, v		DPT	60	100			
					trace	of clay						
	1040 0											
50	1249.0											

PROJECT: LPSNRD - 2 Communities EA PROJECT #: 6333202			= -			BORING NO.: RDS006			LUG		
					BORING DEPTH:	55 ft					
			6333202			1,299.00	DATE DRIL			1/2020	
	ING CO.		ns Environ	mental		4537311.17	BORING M			DPT	
DRILL			ason A.		EASTING:	687491.53	TYPE OF S	URFACE:	Soy	/bean Field	ł
	OGIST:		Travis H.		DEPTH TO WATER:	48 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	
(FT)	(FT)	CONST.	COLOR	CODE		DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as	s previous	DPT	60	100		
_											
-											
_											
-											
_			10YR5/3	SP	Sand brown med to	o high density, wet to	-				
-			10110/5	51		fine sand grains					
					Saturated, very	nile sana grains					
55	1244.0										
	-				Bottom of H	ole @ 55 feet	1		0		
$\lfloor \ \rfloor$											
_											
<u> </u>	1239.0										
60	1239.0								0		
									0		
-											
65	1234.0								_		
									0		
-											
-											
-											
70	1229.0										
									0		
-											
-											
75	1224.0										
-	=		1		1		1		1		

					, Inc., PBC			RDS007			
PROJ			- 2 Commu		BORING DEPTH: 40 ft	BORING N					
	OJECT		6333202		SURFACE ELEV: 1,222.00	DATE DRIL			1/2020		
	ING CO.		ns Environ	mental	NORTHING: 4536002.77				DPT		
			ason A.		EASTING: 687218.92	TYPE OF S	SURFACE:	C	orn Field		
	OGIST:		Travis H.		DEPTH TO WATER: 36 ft						
DEP.		WELL		USCS CODE		SAMPLE	LENGTH	% RE- COVERY	Blow	LAB DATA	
(FT)	(FT)	CONST.			GEOLOGIC DESCRIPTION	METHOD	(IN.)		Count	DATA	
_			10YR3/2	ML	Silt, very dark grayish brown, med to high stiff, dry to moist	DPT	48	80			
					still, dry to moist						
_											
5	1217.0										
						DPT	60	100			
_			10YR3/3	CL	Silty clay, dark brown, low to med						
					stiff, moist to wet						
I —											
_											
10	1212.0										
	1212.0				Same as previous	DPT	60	100			
_						2					
. –	4007.0										
15	1207.0					DDT	60	100			
_					Same as previous	DPT	00	100			
I —											
—											
-											
_											
20	1202.0										
					Same as previous, soft, wet	DPT	60	100			
_											
-											
-											
-											
25	1197.0										
						- I					

			PSNRD - 2 Communities BORING DEPTH: 40 ft				_	BORING LO RDS007			
PROJE					SURFACE ELEV: 1,222.00		0.:				
	OJECT		6333202			DATE DRIL			1/2020		
	ING CO.		ns Environi	mental	NORTHING: 4536002.77				DPT		
			ason A.		EASTING: 687218.92	TYPE OF S	ORFACE:	C	orn Field		
	OGIST:		Travis H.		DEPTH TO WATER: 36 ft						
DEP.		WELL		USCS		SAMPLE	LENGTH	% RE-	Blow		
(FT)	(FT)	CONST.	COLOR	CODE		METHOD	(IN.)	COVERY	Count	DATA	
					Same as previous	DPT	60	100			
-											
-											
30	1192.0		10YR5/1	CL	Clay, gray, low to med stiff, moist to wet,	-					
					trace very fine sand	DPT	60	100			
35	1187.0										
	101.0					DPT	60	100			
								100			
			10YR5/1	SP	Clayey sand, gray, low to med density,						
1					saturated, very fine sand grains						
$ \square$											
	1400.0										
40	1182.0				Bottom of Hole @ 40 feet			0			
-								0			
-											
-											
$ \square$											
45	1177.0										
								0			
-											
-											
-											
-											
-											
50	1172.0										

			-					RDS008			
PROJ			- 2 Commu		BORING DEPTH: 35 f		G NO.:				
	OJECT		6333202		SURFACE ELEV: 1,283		DRILLED:		2/2020		
	ING CO.		ns Environ	mental	NORTHING: 4537047.1		G METHOD:		DPT		
DRILL			ason A.		EASTING: 687029.63		OF SURFACE:	Brome	grass / ce	dars	
GEOL	OGIST:		Travis H.		DEPTH TO WATER: 34				-		
DEP.	ELEV	WELL		USCS		SAMP		% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTIC	ON METH	OD (IN.)	COVERY	Count	DATA	
			10YR3/2	ML	Silt, very dark grayish brown, me stiff, dry to moist, root trac		Г 48	80			
			10YR4/4	CL	Silty clay, dark yellowish bro med to high stiff, dry to mo root traces						
5	1278.0		10YR4/3	CL	Clay, brown, med to high stiff, trace of gravel / till	moist, DPT	г 60	100			
 10	1273.0				Same as previous, slightly more sand and gravel / till	e coarse DPT	г 60	100			
15	1268.0				Same as previous	DP1	г 60	100			
20	1263.0		10YR6/2	SP	Clayey sand, light brownish gra to high density, moist to wet, w sand grains		г 60	100			
25	1258.0										

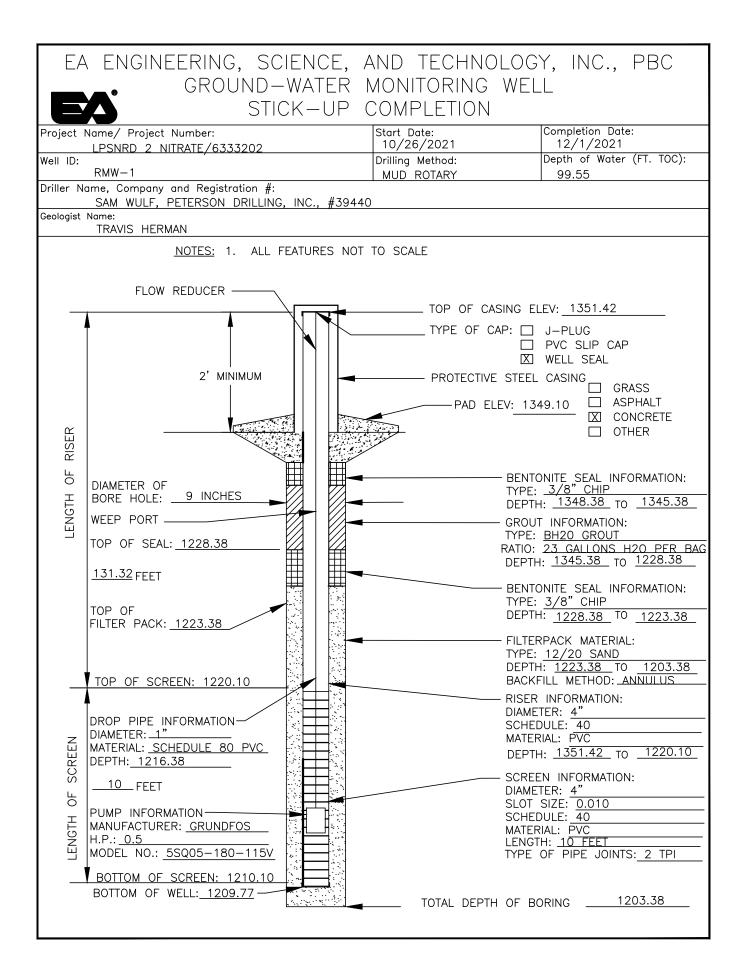
				= -				BORING NO.: RDS008				
PROJ			- 2 Commu				BORING N					
	OJECT		6333202		SURFACE ELEV:	1,283.00	DATE DRIL			2/2020		
	ING CO.		ns Environi	mental	NORTHING:	4537047.11	BORING M			DPT		
DRILL			ason A.		EASTING:	687029.63	TYPE OF S	URFACE:	Brome	grass / ce	dars	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	34 ft						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC I	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
			10YR6/2	SP	high density, moi	nish gray, med to ist to wet, very fine grains	DPT	60	100			
 30	1253.0				Same at	s previous	DPT	60	100			
—												
35	1248.0											
					Bottom of H	ole @ 35 feet			0			
40	1243.0								0			
45	1238.0								0			
50	1233.0											

				nities BORING DEPTH: 45 ft			BORING NO.: RDS009A				
PROJE			- 2 Commu								
	OJECT #		6333202		SURFACE ELEV:	1,311.00	DATE DRIL			/2020	
	ING CO.		ns Environi	mental	NORTHING:	4536938.48	BORING M			DPT	
DRILL			ason A.		EASTING:	687253.03	TYPE OF S	URFACE:	Soy	/bean Field	1
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	N/A (Refusal)					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC D	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR4/4	ML	Clayey silt loam, da	ark yellowish brown,	DPT	60	100		
					med to high stiffnes	s, moist, root traces					
					_						
5	1306.0										
-					Same as	previous	DPT	60	100		
_							511		100		
_											
_											
_											
10	1301.0										
10	1001.0				Same as previous	low to med stiffness,	DPT	60	100		
_						to wet	DET	00	100		
					moist	to wet					
_											
_											
_											
45 -	4000.0										
15	1296.0						DDT	<u> </u>	400		
_							DPT	60	100		
			40)/50/5		Oilteala baile l		-				
			10YR3/6	CL		wish brown, med to					
						moist, traces of					
					sand / g	gravel till					
	10515										
20	1291.0										
							DPT	60	100		
			10YR5/6	CL		vish brown, med to					
					-	noist to wet, sand					
					is fine grained,	trace gravel / till					
25	1286.0										

_					es BORING DEPTH: 45 ft			BORING LUC				
PROJE			- 2 Commı				BORING N		RDS			
	OJECT		6333202		SURFACE ELEV:	1,311.00	DATE DRIL			9/2020		
DRILL	ING CO.	: Plaii	ns Environi	mental	NORTHING:	4536938.48	BORING M	ETHOD:		DPT		
DRILL	ER:	J	ason A.		EASTING:	687253.03	TYPE OF S	URFACE:	Soy	/bean Field	1	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	N/A (Refusal)						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR		GEOLOGIC I	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
(/	()		10YR4/3			stiffness, gravel / till	DPT	60	100			
			101K4/3	UL	Ciay, brown, night	sumess, graver / un	DFT	00	100			
-												
30	1281.0											
					Same as	s previous	DPT	60	100			
35	1276.0											
					Same as	s previous	DPT	60	100			
_												
-												
-												
40	1271.0											
40	1271.0				Same as	s previous	DPT	60	100			
					Same as	previous	DFT	00	100			
-												
			10/00//		Oleve / ab alter black	have high stiff.	4					
			10YR2/1	CL		hard, high stiffness,						
					moist, trace s	and / gravel till						
45	1266.0											
						ole @ 45 feet			0			
					(Ref	fusal)						
50	1261.0											

		: LPSNRD - 2 Communities BORING DEPTH: 25 ft						-	RDS009B			
PROJ							BORING NO					
	OJECT		6333202			263.00	DATE DRIL			0/2020		
	ING CO.		ns Environ	mental	NORTHING: 453672					DPT		
DRILL			ason A.		EASTING: 687462		TYPE OF S	UKFACE:	Soy	/bean Field	1	
	OGIST:		Travis H.		DEPTH TO WATER:	20 ft					-	
DEP.		WELL		USCS			SAMPLE	LENGTH	% RE-	Blow		
(FT)	(FT)	CONST.		CODE	GEOLOGIC DESCRIP		METHOD	(IN.)	COVERY	Count	DATA	
			10YR5/4	ML	Silt, yellowish brown, med to h	-	DPT	60	100			
-					dry to moist, root tra	ues						
-												
-												
-												
5	1258.0											
							DPT	60	100			
			10YR5/6	CL	Silty clay loam, yellowish br	own, med						
					to high stiffness, mo	oist						
10	1253.0											
_					Same as previous, low to me	ed stiffness,	DPT	60	100			
					moist to wet							
_												
-												
-												
15	1248.0											
					Same as previous	6	DPT	60	100			
-							/					
1												
_												
			10YR6/4	CL	Sandy silty clay, light yellow							
[]					low to med stiffness,	wet						
	1243.0											
							DPT	60	100			
				00	Clavov cond brown low to	city cond in						
-			10YR5/3	SP	Clayey sand, brown, low den							
-			10YR5/3	SP	fine grained, saturat Sand, brown, med to high den							
25	1238.0		101K0/3	37	to fine sand grains, sat							
20	1200.0				to nine santu yrains, sati							

	ROJECT: LPSNRD - 2 Communities							200			
					BORING DEPTH:	25 ft	BORING N				
	OJECT		6333202		SURFACE ELEV:	1,263.00	DATE DRIL			0/2020	
	ING CO.		ns Environi	mental	NORTHING:	4536720.31	BORING M			DPT	
DRILL			ason A.		EASTING:	687462.81	TYPE OF S	URFACE:	Soy	/bean Field	k
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	20 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR		GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
	. ,					Hole @ 25 feet			0		
-					Dottolii ol				Ŭ		
-											
-											
_											
30	1233.0										
									0		
35	1228.0										
									0		
40	1223.0										
									0		
$ \neg$											
45	1218.0										
									0		
-									, , , , , , , , , , , , , , , , , , ,		
-											
-											
-											
50	1213.0										
50	1213.0										


						BORING LU					
PROJECT: LPSNRD - 2 Communities				BORING DEPTH: 64 ft		BORING NO.:		RDS010			
EA PROJECT #: 6333202				SURFACE ELEV: 1,262.00		DATE DRILLED:		12/12/2020			
	ING CO.	-	ns Environi	mental	NORTHING: 4536353.91		BORING METHOD:		DPT		
DRILL	ER:	J	ason A.		EASTING: 686986.54		TYPE OF SURFACE:		Bro	ome grass	
GEOL	OGIST:		Travis H.		DEPTH TO WATER: N/A (refusal)						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC I	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
· ,	()		10YR3/2	ML		h brown, med to high	DPT	48	80		
-			1011(0/2			pist, root traces	511		00		
-											
-											
_											
			10YR5/3	CL		w to med stiff, moist					
5	1257.0				to	wet					
_							DPT	60	100		
10	1252.0										
					Same as previou	s, med to high stiff	DPT	60	100		
_											
15	1247.0										
_	-				Same as	previous	DPT	60	100		
-							2				
			10YR5/6	CL	Sandy clay, vellowis	h brown, med to high					
			1011(3/0	0L		ery fine sand grains					
						ory mile same grains					
20	1242.0										
20	1242.0						DPT	60	100		
-							UPI	00	100		
-											
25	1237.0										

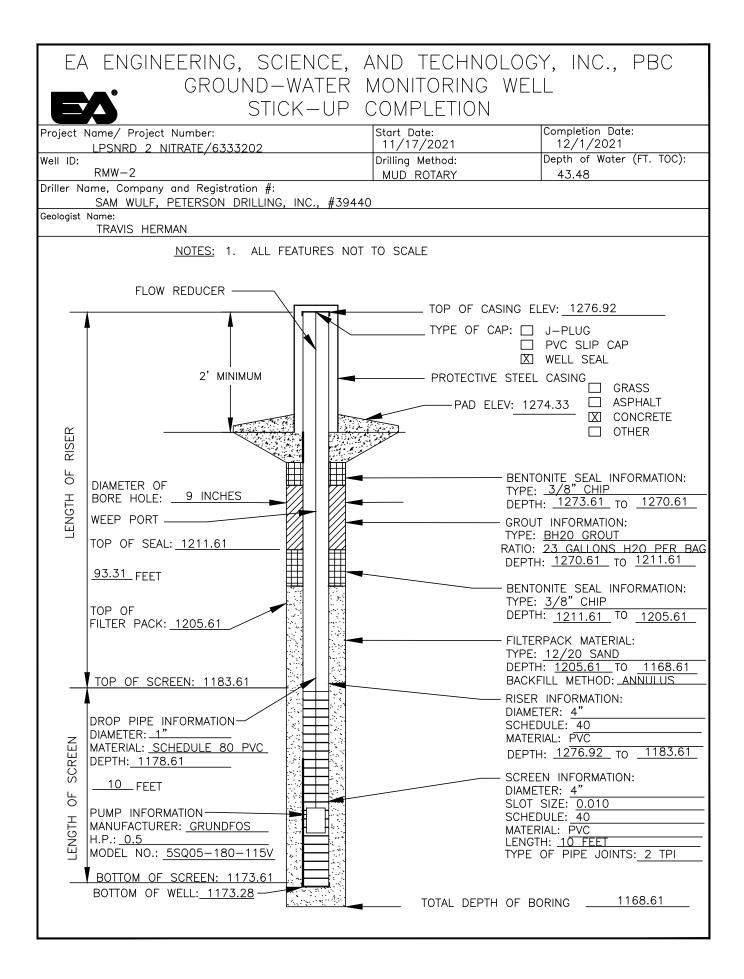
						BURING LUG						
PROJECT: LPSNRD - 2 Communities					BORING DEPTH: 64 ft		BORING NO.:		RDS010			
EA PROJECT #: 6333202					SURFACE ELEV: 1,262.00		DATE DRILLED:		12/12/2020			
DRILL	ING CO.	: Plaii	ns Environi	mental	NORTHING:	4536353.91	BORING METHOD:		DPT			
DRILL	ER:	J	ason A.		EASTING:	686986.54	TYPE OF SURFACE:		Brome grass			
GEOL	OGIST:		Travis H.		DEPTH TO WATER: N/A (refusal)							
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR		GEOLOGIC D	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
、 <i>′</i>	()					previous	DPT	60	100			
					Same as	previous	DFT	00	100			
30	1232.0											
_					Same as	previous	DPT	60	100			
35	1227.0											
					Same as previou	s, low to med stiff	DPT	60	100			
40	1222.0											
					Same as	previous	DPT	60	100			
45	1217.0											
					Same as	previous	DPT	60	100			
50	1212.0											

						BORING LOG					
		BORING DEPTH: 64 ft		BORING N		RDS010					
EA PROJECT #: 6333202 DRILLING CO.: Plains Environmental		SURFACE ELEV: 1,262.00		DATE DRILLED:		12/12/2020					
				mental	NORTHING: 4536353.91		BORING METHOD:		DPT		
DRILL			ason A.		EASTING: 686986.54		TYPE OF SURFACE:		Bro	ome grass	
	OGIST:		Travis H.		DEPTH TO WATER: N/A	(refusal)					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIP		METHOD	(IN.)	COVERY	Count	DATA
					Same as previous		DPT	60	100		
_											
_											
			10YR5/1	CL	Clay, gray, med to high stiff, m	noist, trace					
_				-	very fine sand	,					
55	1207.0										
							DPT	60	100		
_											
_											
_											
60	1202.0										
					Same as previous, very high s	stiff to hard	DPT	48	80		
_											
-											
					Bottom of Hole @ 64 f	eet					
65	1197.0										
									0		
_											
-											
70	1192.0										
									0		
_											
75	1187.0										
				1			1				

	-07					4.45.6		-		URING	
			IRD - 2 Communities 6333202-0003				BORING N		Raymond #1 (Sorensen)		
DRILLING CO.:					SURFACE ELEV: 1,349.10				10/26/2021		
			eterson Dri	liing	NORTHING: 2532184.66		BORING METHOD: TYPE OF SURFACE:		Mud Rotary		
			am Wulf		EASTING: 431836.3963		I YPE OF S	URFACE:	main	tained gra	SS
	OGIST:		avis Herma		DEPTH TO WATER:	99.55 ft from TOC					
DEP.		WELL		USCS CODE			SAMPLE METHOD	LENGTH	% RE- COVERY	Blow	LAB DATA
(FT)	(FT)	CONST.	COLOR			DESCRIPTION		(IN.)		Count	DATA
			10YR3/1	OL	low to med plas	dark gray, moist to wet, ticity, organics and t traces	Grab		0		
5	1344.1		10YR5/3	CL		moist to wet, med to plasticity	Grab		0		
 10 	1339.1		10YR5/3	CL		oist to wet, low to med root traces.	Grab		0		
	1334.1		10YR5/3	CL		ious, trace of fine k grains	Grab		0		
	1329.1		10YR5/3 10YR5/6	CL SW	grains, trac Sand, vf to coarse (s, trace of fine black e of gravel (till) grains, yellowish brown, , nonplastic	Grab Grab		0		
25	1324.1										

		LPSNRD - 2 Communities BORING DEPTH: 145 ft			BORING NO.: Raymond #1 (Sorensen)						
PROJE					-				-	-	ו)
	OJECT		6333202-00		SURFACE ELEV:	1,349.10	DATE DRIL			6/2021	
	ING CO.		eterson Dri	lling		2532184.66	BORING M			d Rotary	
DRILL			am Wulf		EASTING:	431836.3963	TYPE OF S	URFACE:	main	tained gra	SS
	OGIST:		avis Herma		DEPTH TO WATER:	99.55 ft from TOC					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIO	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR5/6	SW	Same as pre	evious, trace clay	Grab		0		
30	1319.1		10YR5/4	SW		coarse, yellowish brown, to low plasticity	Grab		0		
35	1314.1		10YR5/4	SW		s with traces of coarse creased clay content	Grab		0		
	1000 (10YR5/3	CL		lay, coarse sand and w to med plasticity (till)	Grab				
40	1309.1				-	l content, no gravel, plasticity	Grab		0		
45	1304.1		10YR5/3	CL	brown, med to h	y, 20-30% sand/gravel, high plasticity, some taining (till)	Grab		0		
50	1299.1		10YR5/4	SW		se, yellowish brown, e of clay	Grab				

		LPSNRD - 2 Communities			RD - 2 Communities BORING DEPTH: 145 ft			BORING LUG				
PROJI	-				BORING DEPTH:	145 ft	BORING N		Raymond #1		ר)	
	OJECT #		6333202-00		SURFACE ELEV:	1,349.10	DATE DRIL			6/2021		
	ING CO.		eterson Dri	lling	NORTHING:	2532184.66	BORING M		Mu	d Rotary		
DRILL			Sam Wulf		EASTING:	431836.3963	TYPE OF S	URFACE:	main	tained gra	SS	
GEOL	OGIST:	Tr	ravis Herma	an	DEPTH TO WATER:	99.55 ft from TOC						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
			10YR5/4	SW	Same	as previous	Grab		0			
55	1294.1											
			10YR5/4	SW	Same as previous	s, trace gravel, slightly	Grab		0			
					higher	clay content						
			10YR5/3	CL	Sandy/gravelly cla	y, coarse sand to med	Grab					
					gravel, brown, me	d to high plasticity (till)						
60	1289.1											
			10YR4/1	CL	Sandy clay, vf	sand to fine gravel,	Grab		0			
					dark gray, med	to high plasticity (till)						
65	1284.1											
			10YR4/1	CL		previous, lower	Grab		0			
					sand/grav	el content (till)						
70	1279.1											
			10YR4/1	CL		gray clay, high density,	Grab		0			
						sticity, trace coarse						
					sand/fin	e gravel (till)						
75	1274.1											

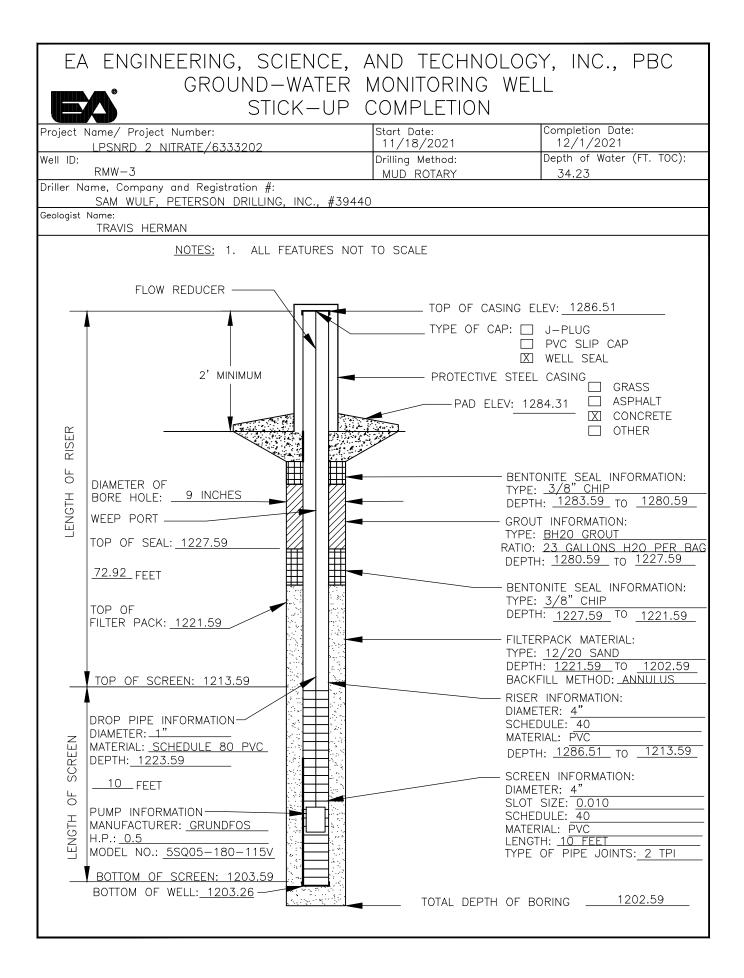

		LPSNRD - 2 Communities			And, Technology, Inc., PBC				BORING NO.: Raymond #1 (Sorensen)				
PROJI					BORING DEPTH:	145 ft	BORING N				า)		
	OJECT		6333202-00		SURFACE ELEV:	1,349.10	DATE DRIL			6/2021			
	ING CO.		eterson Dri	lling	NORTHING:	2532184.66	BORING M			d Rotary			
DRILL			Sam Wulf		EASTING:	431836.3963	TYPE OF S	URFACE:	main	tained gra	SS		
	OGIST:		avis Herma		DEPTH TO WATER:	99.55 ft from TOC							
DEP.		WELL		USCS CODE			SAMPLE METHOD	LENGTH	% RE- COVERY	Blow	LAB DATA		
(FT)	(FT)	CONST.				DESCRIPTION		(IN.)	COVERT	Count	DATA		
_			10YR4/1	CL	Same as	previous (till)	Grab						
-													
80	1269.1												
			10YR4/1	CL	Same as	previous (till)	Grab						
o <i>F</i> –	1264.1												
85	1204.1		10YR4/1	CL	Samo as	previous (till)	Grab						
-			10114/1	CL.	Game as		Glab						
-													
90	1259.1												
			10YR4/1	CL		ous, slightly lower	Grab						
					clay d	ensity (till)							
-													
-													
95	1254.1												
			10YR4/1	CL	Same as	previous (till)	Grab						
100	1249.1												
100	1243.1			1									

		LPSNRD - 2 Communities			SNRD - 2 Communities BORING DEPTH: 145 ft			BORING NO.: Raymond #1 (Sorensen)				
PROJE					BORING DEPTH:	145 ft	BORING N			-	า)	
	OJECT		6333202-00		SURFACE ELEV:	1,349.10	DATE DRIL			6/2021		
DRILL	ING CO.	: <u>P</u>	eterson Dri	lling	NORTHING:	2532184.66	BORING M	ETHOD:	Mu	d Rotary		
DRILL			am Wulf			431836.3963	TYPE OF S	URFACE:	main	tained gra	SS	
GEOL	OGIST:	Tra	avis Herma	an	DEPTH TO WATER:	99.55 ft from TOC						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
			10YR4/1	CL		ay, 30-40% vf sand	Grab					
						, low to med plasticity						
						,,						
I —												
I –												
I —												
105	1244.1											
105	1244.1		10YR4/1	CL	Samo a	s previous	Grab					
			10114/1	0L	Same a	s previous	Giab					
-												
			10YR4/1	SW	Clayey sand/gray	vel, 20-30% fines,	Grab					
			10114/1	300		ravels, dark gray,	Giab					
						angular grains						
					nonpiasiic, a	angular grains						
110	1239.1											
110	1239.1			0.47	Como o		Orah					
			10YR4/1	SW	Same a	s previous	Grab					
				00	Cond with moder	sing arou nonnlagtia	Orah					
			10YR5/1	SP		ains, gray, nonplastic,	Grab					
					trace	of clay						
445	40044											
115	1234.1			0.5	Sama a		01					
			10YR5/1	SP	Same a	s previous	Grab					
			100/05/4		Orand of read	turner finne anne vel						
			10YR5/1	SP		trace fine gravel,	Grab					
					trac	e clay						
100	1000 4											
120	1229.1		10/05/4	05	Cond of to med of	oine arey searchesti-	Orel					
			10YR5/1	SP	Sand, vi to med gra	ains, gray, nonplastic	Grab					
-												
-												
105	1224.4											
125	1224.1											

		LPSNRD - 2 Communities			echnology, Inc., PBC			BORING LOG				
PROJ					BORING DEPTH:	145 ft	BORING N		Raymond #1		n)	
	OJECT				SURFACE ELEV:	1,349.10	DATE DRIL			6/2021		
	ING CO.		eterson Dri	lling		2532184.66	BORING M			d Rotary		
			am Wulf			431836.3963	TYPE OF S	URFACE:	main	tained gra	SS	
	OGIST:		avis Herma		DEPTH TO WATER:	99.55 ft from TOC						
DEP. (FT)	ELEV (FT)	WELL CONST.	COLOR	USCS CODE	GEOLOGIC	DESCRIPTION	SAMPLE METHOD	LENGTH (IN.)	% RE- COVERY	Blow Count	LAB DATA	
. ,	. ,		10YR5/1	SP		as previous	Grab	. ,				
. . .												
	1219.1		10YR5/1	SP	Same a	as previous	Grab					
135 	1214.1		10YR5/1	SP	Same a	as previous	Grab					
	1000 4		10YR5/1	SW	Sand, vf san	ld to med gravel	Grab					
140	1209.1				DOLLA	140 foot has	d					
	1204.1			T	Screened Inter Surface Elevation colle	140 feet bgs val: 129' - 139' bgs ected from concrete well iter elevation from surfac	-					

DRILL DRILL	OJECT : ING CO.	#: : P S Tr WELL	Two Comm 6333202 eterson Dri am Wulf avis Herma	lling	SURFACE ELEV: 1,27 NORTHING: 2529799				(Thompson 7/2021 d rotary	n)
DRILL DRILL GEOL DEP.	ING CO. ER: OGIST: ELEV	: P S Tr WELL	eterson Dri am Wulf	lling	NORTHING: 2529799					
DRILL GEOL DEP.	.ER: OGIST: ELEV	S Tr WELL	am Wulf	-		93 BORING	IETHOD:	mu	d rotary	
GEOL DEP.	OGIST: ELEV	Tr WELL								
DEP.	ELEV	WELL	avis Herma		EASTING: 428007.43		SURFACE:	na	tive grass	
					DEPTH TO WATER: 43.48 ft	from TOC				
(FT)	(FT)			USCS		SAMPLE	LENGTH	% RE-	Blow	LAB
		CONST.	COLOR	CODE	GEOLOGIC DESCRIPT		(IN.)	COVERY	Count	DATA
			10YR 3/1	OL/ML	Silty organic top layer, very d dry to moist, root trace			0		
 5	1269.3		10YR 5/3	CL	Silty clay, brown, 40-50% silt	t, low to Grab		0		
					medium plasticity					
 10	1264.3		10YR 5/3	CL	Same as previous	Grab		0		
	1259.3		10YR 5/3	CL	Same as previous, trace o to medium black angular o			0		
 20	1254.3		10YR 5/3	CL	Sandy clay, 30-40% fine to mea low to medium plastici			0		
	1249.3		10YR 5/3	SW/CL	Clayey sand, brown, well grad fine to coarse, non to low pl sub-angular to angula	asticity,				

		LPSNRD Two Communities					BORING LUG				
PROJE							BORING N		aymond #2		n)
	OJECT		6333202		SURFACE ELEV: 1,27		DATE DRIL			7/2021	
	ING CO.		eterson Dri	lling	NORTHING: 2529799		BORING M			d rotary	
DRILL			am Wulf		EASTING: 428007.43		TYPE OF S	URFACE:	na	tive grass	
GEOL	OGIST:	Tra	avis Herma	in	DEPTH TO WATER: 43.48 ft	from TOC					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPT	ION	METHOD	(IN.)	COVERY	Count	DATA
									0		
30	1244.3										
_			10YR 4/3	SP/CL	Clayey sand, brown, poorly	-	Grab		0		
					very fine sand, 10-20% fines, r	onplastic					
I _											
-											
_											
-											
-											
35	1239.3										
	1200.0		10YR 4/3	SW/CL	Clayey sand, brown, fine to coa	arse sand	Grab		0		
-			10111 4/3	SW/OL	20-30% fines, low to medium		Grab		U		
-					trace of medium black gr						
$ \neg$						-					
1											
40	1234.3										
			10YR 4/3	SP/CL	Clayey sand, brown, very fine t		Grab		0		
					sand, 20-30% fines, low to r	nedium					
					plasticity						
_											
					1	00/ 5					
_					Increasing clay content, 30-4	0% tines	Grab				
	1000 0										
45	1229.3		10YR 4/3		Sandy clay, brown, 20-30%	fine to	Grob		0		
-			101K 4/3	CL/5VV	coarse sand, low to medium		Grab		0		
					נטמושב שמות, וטא נט ווופטוטווו	plasticity					
-											
-											
-											
-											
-											
			10YR 4/3	SP/CL	Clayey sand, light brown, very f	ine grains.	Grab				
50	1224.3				10-20% fines, non to low pl	-					
	=					· · · · · · · · · · · · · · · · · · ·					


		LPSNRD Two Communities				BORING LOG				
PROJE					BORING DEPTH: 105 ft	BORING N		Raymond #2		n)
	OJECT #		6333202		SURFACE ELEV: 1,274.3	DATE DRIL			7/2021	
	ING CO.		eterson Dri	lling	NORTHING: 2529799.93	BORING M			d rotary	
DRILL			am Wulf		EASTING: 428007.4391	TYPE OF S	SURFACE:	na	tive grass	
GEOL	OGIST:	Tra	avis Herma	n	DEPTH TO WATER: 43.48 ft from TOC					
DEP.	ELEV	WELL		USCS		SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
								0		
			10YR 4/3	SW/CL	Clayey sand, light brown, well graded fine	Grab				
55	1219.3				to coarse sand, 20-30% fines, low to					
					medium plasticity			0		
_										
			10YR 4/3	CL/SP	Sandy clay, brown, 10-20% fine sand,	Grab				
			1011(4/5	01/01	medium to high plasticity	Grab				
					modulin to high plactory					
60	1214.3									
	-							0		
			10YR 5/1	CL	Clay, gray, 0-10% fine sand, medium to	Grab				
					high plasticity					
65	1209.3									
			10YR 5/1	CL	Same as previous, no sand, light gray	Grab		0		
-										
-			10YR 5/1	CL	Same as previous with 10-20%	Grab				
-			10111.0/1	0L	coarse sand (till)	Grab				
-					· · · · · · · · · · · · · · · · · · ·					
70	1204.3									
		···] [···]	10YR 5/1	CL	Same as previous, 20-30% coarse sand	Grab		0		
1		.:.] [::]								
]										
$ \square$										
$\lfloor \ \rfloor$		··· ·								
75	1199.3	· · · · · · · · ·								

_					BORING NO.: Raymond #2 (Thompson)					
PROJI			NRD Two Communities BORING DEPTH: 105 ft 6333202 SURFACE ELEV: 1,274.3 Peterson Drilling NORTHING: 2529799.93		BORING N				n)	
	OJECT					DATE DRIL			7/2021	
	ING CO.			lling		BORING M			ld rotary	
DRILL			Sam Wulf		EASTING: 428007.4391	TYPE OF S	SURFACE:	na	tive grass	
GEOL	OGIST:	T	ravis Herma	n	DEPTH TO WATER: 43.48 ft from TOC					
DEP.	ELEV	WELL		USCS		SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST	COLOR	CODE	GEOLOGIC DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
		· · · · · · · ·	. 10YR 5/1	CL	Same as previous (till)	Grab				
		···· ··								
		··· ·								
		··· · · · · ·	. 10YR 5/2	CL	Increasing sand content to 30-40%,	Grab				
					medium to coarse grains, grayish brown					
80	1194.3	· · · · · · ·								
_										
		· · · · · · ·								
			•							
_										
85	1189.3		•							
60	1109.3	··· ·	10YR 5/2	CL	Same as previous, grayish brown,	Grab				
			. 101K 5/2	CL	10-20% sand, dark red streaks in clay,	Grab				
					(till)					
-		···· ··	•		((11))					
			•							
			÷							
90	1184.3		•							
			10YR 5/2	CL	Same as previous	Grab				
			•							
		···//··	· .							
			·.							
			-			1				
	4470 0	···K∕,[·`.				1				
95	1179.3				Sama as assisted					
-			10YR 5/2	CL	Same as previous	Grab				
			÷.							
-						1				
-										
-						1				
		··· //[·`	÷.							
-						1				
-		[::: //::				1				
100	1174.3	∴. //[·.	:.			1				
		· · / ·	· •			1		1		

_		LPSNRD Two Communities		-							
PROJ					BORING DEPTH:	105 ft	BORING N		Raymond #2		n)
	OJECT		6333202		SURFACE ELEV:	1,274.3	DATE DRIL			7/2021	
	ING CO.		eterson Dri	lling	NORTHING:	2529799.93	BORING M			d rotary	
DRILL			am Wulf			428007.4391	TYPE OF S	URFACE:	na	tive grass	
	OGIST:		avis Herma		DEPTH TO WATER:	43.48 ft from TOC					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR 6/1	CL	Same as p	revious, gray	Grab				
_											
-		· · · · · · · · · · · · · · · · · · ·									
105	1169.3										
.00	1100.0				BOH	@ 105'					
						val 90' - 100' bgs					
						cted from concrete well	pad				
						er elevation from surface	-				
-											
110	1164.3										
—											
115	1159.3										
100	44540										
120	1154.3										
125	1149.3										

					LIDENIED 2 Communities BOBING DEPTH: 91 feet			BORING LUG				
PROJI			2 Commur	nities	BORING DEPTH:	81 feet	BORING N		Raymond #	#3 (Settje)		
EA PR	OJECT #	#: <u> </u>	6333202		SURFACE ELEV:	1,284.3	DATE DRIL		11/1	8/2021		
DRILL	ING CO.	: Pe	eterson Dril	ling	NORTHING:	2532571.807	BORING M	ETHOD:	mu	id rotary		
DRILL	ER:	S	am Wulf		EASTING:	426675.4257	TYPE OF S	URFACE:		grass		
GEOL	OGIST:	Tra	avis Herma	n	DEPTH TO WATER:	34.23 ft from TOC						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
			10YR 2/1	OL	Organic top laye	r, silt, black, low to	Grab		0			
						asticity, roots						
_												
_												
5	1279.3											
			10YR 2/2	CL	Silty clay, very dark	prown, medium to high	Grab		0			
						sticity.			-			
						,						
10	1274.3											
	-		10YR 2/2	CL	Same a	s previous	Grab		0			
				01			0.00		ů,			
15	1269.3											
			10YR 4/4	CL	Silty clay, dark yello	owish brown, 10-20%	Grab		0			
				-		and, low to medium			-			
						sticity.						
-						-						
			10YR 4/4	CL	Lower silt conte	nt, red and yellow	Grab					
						, medium to high						
						sticity						
1												
20	1264.3											
			10YR 4/4	CL	Sandy clay, dark	k yellowish brown,	Grab		0			
						edium sand, low to						
						plasticity						
25	1259.3											
L								·				

_		LPSNRD 2 Communities							BORING LOG		
PROJI			2 Commur	nities	BORING DEPTH: 81 feet	BORING N	0.:	Raymond #	#3 (Settje)		
EA PR	OJECT #	#:	6333202		SURFACE ELEV: 1,284.3	DATE DRI	LLED:	11/1	8/2021		
DRILL	ING CO.	: P	eterson Dril	ling	NORTHING: 2532571.807	BORING N	IETHOD:	mu	id rotary		
DRILL	ER:	S	am Wulf		EASTING: 426675.4257	TYPE OF S	SURFACE:		grass		
GEOL	OGIST:	Tr	avis Herma	n	DEPTH TO WATER: 34.23 ft from TOC						
DEP.	ELEV	WELL		USCS		SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
(* * 7	()		10YR 4/4			-	()				
_			101 K 4/4	CL	Same as previous	Grab		0			
_			10YR 4/3	SP/CL		Grab					
					sub-angular to rounded, 10-20% fines,						
					nonplastic						
30	1254.3										
								0			
35	1249.3										
								0			
			10YR 5/3	CL/SP	Sandy clay, brown, 10-20% vf sand,	Grab					
					medium to high plasticity						
40	1244.3										
			10YR5/1	CL/SP	Same as previous, gray	Grab		0			
-					Increasing sand content, 20-30%	Grab					
					vf to coarse grains (till)						
-											
-											
-											
45	1239.3										
F-I			10YR 5/1	CL/SW	Sandy clay, gray, 30-40% vf to	Grab		0			
-				2_,011	coarse sand, trace gravel, medium to	Ciub		Ŭ			
-					high plasticity						
-					nigh plasticity						
-											
-											
-											
50	1234.3										
50	1204.0						I				

									URING	200
PROJ			2 Commu		BORING DEPTH: 81 feet	BORING N		Raymond #		
	OJECT #	-	6333202		SURFACE ELEV: 1,284.3	DATE DRIL			8/2021	
	ING CO.	-	eterson Dril	lling	NORTHING: 2532571.807	BORING M	ETHOD:	mu	d rotary	
DRILL			am Wulf		EASTING: 426675.4257	TYPE OF S	URFACE:		grass	
GEOL	OGIST:	Tra	avis Herma	ın	DEPTH TO WATER: 34.23 ft from TOC					
DEP.	ELEV	WELL		USCS		SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR 5/1	CL/SW	Same as previous	Grab		0		
								-		
55	1229.3									
			10YR 4/1	CL/SW	Same as previous, dark gray,	Grab		0		
1					30-40% sands and gravels (till)					
60	1224.3									
			10YR 4/1	CL/SW	Same as previous	Grab		0		
]										
		[
65	1219.3									
			10YR 4/1	CL/SW	Same as previous, 20-30% sands	Grab		0		
					and gravels					
		····								
-										
70 -	1214.3									
70	1214.3		10YR 4/1		Samo os provieus	Orch		0		
-			101K 4/1	CL/SW	Same as previous	Grab		0		
		.::K/(::)								
-										
-										
-										
-										
-										
75	1209.3									
75	1209.3	••//••			1					

			-		, INC., PBC	-			ORING	L00
PROJ			2 Commu		BORING DEPTH: 81 feet	BORING N		Raymond		
	OJECT		6333202		SURFACE ELEV: 1,284.3	DATE DRIL			8/2021	
	ING CO.		eterson Dri	lling	NORTHING: 2532571.807	BORING M		mu	ld rotary	
DRILL			am Wulf		EASTING: 426675.4257	TYPE OF S	SURFACE:		grass	
	OGIST:		avis Herma	_	DEPTH TO WATER: 34.23 ft from TOC					
DEP.		WELL		USCS CODE		SAMPLE METHOD	LENGTH	% RE- COVERY	Blow	LAB DATA
(FT)	(FT)	CONST.	COLOR		GEOLOGIC DESCRIPTION		(IN.)	COVERT	Count	DATA
	1204.3		10 YR 4/1			Grab				
-			10YR 4/1	CL/SW	Same as previous	Grab				
				▼	BOH @ 81' bgs Screened Interval 70' - 80' Surface Elevation collected from concrete wel Indicates groundwater elevation from surfac	•				
85	1199.3									
90	1194.3									
95	1189.3									
	1184.3									

Appendix C

Laboratory Results

This page intentionally left blank

REPORT NUMBER **20-351-0564** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDSOO1

SOIL ANALYSIS REPORT

								RAL AMMONIU	JM ACETA	ATE (EXCHA	NGEABLI	E)										
LAB	SAMPLE	ORGANIC		HOSPHOR	1	POT	ASSIUM	MAGNES	IUM	CALCIUI	М	SODIUN	N	pl		CATION EXCHANGE		T BASE SAT				
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRAY	OLSEN BICARBONA	TE	К	Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca		% H	% Na
374			1:7 ppm RATE	1:7	E ppm RA		m RATE	ppm	RATE	ppm	RATE	ppm	RATE	1:1	INDEX	meq/100g	ĸ	l wig	Ca			INd
73653	RDS001-05	percent intre	ppm mm2	ppm nm	- pp	ne pp		ppm		pp		ppm				med 100g						
	RDS001-00																					
	RDS001-15																					
	RDS001-10																					
	RDS001-20																					
	RDS001-30																					
	RDS001-35																					
/ 0000																						
LAB			NITRATE-N	(FIA)					SUI	LFUR	7	ZINC	MAN	IGANESE	IRON		OPPER	BORON	EXCE	ESS S(OLUBLE	
NUMBER	SURFACE		SUBSOIL		SL	JBSOIL 2				S		Zn		Mn	Fe		Cu	В	LIN	ME	SALTS	
	SURFACE				SU	JBSOIL 2	depth	Total Ibs/A											LIN	ME S		
374	ppm lbs/A	depth (in) ppm	SUBSOIL			JBSOIL 2 Ibs/A	depth (in)	lbs/A	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe DTPA		Cu	B SORB. DT	LIN	ME Star	SALTS	E
374 73653	ppm Ibs/A	depth (in) ppm 0-5	SUBSOIL	l depth				Ibs/A	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654	ppm lbs/A 5 8 2 3	depth (in) ppm 0-5 5-10	SUBSOIL	l depth				Ibs/A 8 3	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654 73655	ppm lbs/A 5 8 2 3 1 2 3 1	depth (in) ppm 0-5 5-10 0-15	SUBSOIL	l depth				Ibs/A 8 3 3	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654 73655 73656	ppm lbs/A 5 8 2 3 2 3 1 3 4 1	depth (in) ppm 0-5 5-10 0-15 5-20	SUBSOIL	l depth				Ibs/A 8 3 3 4	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654 73655 73656 73657	ppm lbs/A 5 8 2 3 2 3 1 3 4 1 2 3 2	depth (in) ppm 0-5 5-10 0-15 5-20 0-25 0.00000000000000000000000000000000000	SUBSOIL	l depth				Ibs/A 8 3 3 4	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654 73655 73656 73657 73658	ppm lbs/A 5 8 2 3 1 2 3 1 3 4 1 2 3 2 1 2 2	depth (in) ppm 0-5 5-10 0-15 5-20 20-25 25-30	SUBSOIL	l depth				Ibs/A 8 3 3 4	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654 73655 73656 73657	ppm lbs/A 5 8 2 3 1 2 3 1 3 4 1 2 3 2 1 2 2	depth (in) ppm 0-5 5-10 0-15 5-20 0-25 0.00000000000000000000000000000000000	SUBSOIL	l depth				Ibs/A 8 3 3	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654 73655 73656 73657 73658	ppm lbs/A 5 8 2 3 1 2 3 1 3 4 1 2 3 2 1 2 2	depth (in) ppm 0-5 5-10 0-15 5-20 20-25 25-30	SUBSOIL	l depth				Ibs/A 8 3 3 4	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E
374 73653 73654 73655 73656 73657 73658	ppm lbs/A 5 8 2 3 1 2 3 1 3 4 1 2 3 2 1 2 2	depth (in) ppm 0-5 5-10 0-15 5-20 20-25 25-30	SUBSOIL	l depth				Ibs/A 8 3 3 4	ppm	S CAP	Е	Zn otpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. DI	TPA	ME Star	SALTS 1:1 mhos/	E

REV.10/17

REPORT NUMBER **20-351-0565** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS002

SOIL ANALYSIS REPORT

										AL AMMONI				LE)										
LAB	SAMPLE		-		HOSPHOR			POTASS		MAGNES	IUM	CALCIU	М	SODIU		pl		CATION EXCHANGE		T BASE SAT		ON (C		,
NUMBER	IDENTIFICATI			P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRA	Y) BICARB	N ONATE	K		Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca		% H	% Na
374				1:7 ppm RATE	1:7	·	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	1:1	INDEX	meq/100g	K	ivig	Ca			ING
73660	RDS002-05				PP	Phone Phone		P.P		PP		P.P		PP										
	RDS002-10																							
	RDS002-15																							
	RDS002-20																							
	RDS002-25																							
	RDS002-30																							
	RDS002-35																							
	RDS002-40																							
LAB			N	ITRATE-N	(FIA)						SU	ILFUR		ZINC	MAN	GANESE	IRON	C	OPPER	BORON	I EX	XCESS	SOLUBLE	
LAB NUMBER	SURFA	CE	N	ITRATE-N SUBSOIL 1			SUBSC	IL 2		T	-	S		Zn		Mn	Fe		Cu	В	R	XCESS LIME RATE	SALTS	
NUMBER		depth		SUBSOIL 1	depth			d	epth	Total Ibs/A	- I)	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	depth (in)	ppm		1	ppm	SUBSC Ibs/A	d	epth (in)	lbs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu	B SORB. DT	R	RATE	SALTS	
NUMBER *374* 73660	ppm lbs/A	depth (in) 2 0-5		SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661	ppm Ibs/A 1 1	depth (in) 2 0-5 2 5-10		SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661 73662	ppm lbs/A 1 1 1	depth (in) 2 0-5 2 5-10 2 10-15	ppm	SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661 73662 73663	ppm Ibs/A 1 1 1 1 1	depth (in) 2 0-5 2 5-10 2 10-15 2 15-20	ppm	SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661 73662 73663 73664	ppm Ibs/A 1 1 1 1 1 1 1	depth (in) 2 0-5 2 5-10 2 10-15 2 15-20 2 20-25	ppm	SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661 73662 73663 73664 73665	ppm Ibs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	depth (in) 2 0-5 2 5-10 2 10-15 2 15-20 2 20-25 2 25-30	ppm	SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661 73662 73663 73664 73665 73666	ppm Ibs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	depth (in) 2 0-5 2 5-10 2 10-15 2 15-20 2 20-25 2 25-30 2 30-35	ppm	SUBSOIL 1	depth	ppm		d		lbs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661 73662 73663 73664 73665	ppm Ibs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	depth (in) 2 0-5 2 5-10 2 10-15 2 15-20 2 20-25 2 25-30	ppm	SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73660 73661 73662 73663 73664 73665 73666	ppm Ibs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	depth (in) 2 0-5 2 5-10 2 10-15 2 15-20 2 20-25 2 25-30 2 30-35	ppm	SUBSOIL 1	depth	ppm		d		Ibs/A	- I' ppm	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	°PA	RATE	SALTS 1:1 mmhos/	

		Lower Vadose Zon	Platte Sout e Sampling	Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form	ces District of-Custody I	Form		
	Repo	Report & Bill To: Dick Ehrman	Dick Ehrma	n				
			Lower Plat	Lower Platte South NRD			(
Account #: 8722			P.O. Box 83581	3581				
			Lincoln, NE Phone: (4	Lincoln, NE 68501-3581 Phone: (402) 476-2729			(S) MEN	2
Relinquished By (Signature):				Date/Time:	1	1		5
Received By (Signature):			I	Date/Time:		1		
Relinquished By (Signature): Received By (Signature):			Π	Date/Time: Date/Time:		11		
Relinquished By (Signature): Beceived By (Signature):	× 11		-	Date/Time:	16120			
icceived by (albudidiate).				Mr. Inn				
				Tests Requested		Lab #/Order #	Motes	
Sample #	Date	Time	Matrix	Nitrate-N		(Internal Use)	NOICO A	
RDS002-05	12-12-2020	1455	Soil	×				
RDS002-10	0202-21-21	1500	Soil	х				
RDS002-15	12-12-2020	1507	Soil	X				
RDS002-20	0202-21-21	1510	Soil	X				
RDS002-25	02.02-21-61	1514	Soil	X				
RDS002-30	0202-21-21	1517	Soil	X				
RDS002-35	12-12-2020	1522	Soil	X				
RDS002-40	12-12-2020	1532	Soil	X		いる	0	
LANCOL AS			Soil	X		E	27173660-37473601	
-BDS002-50.			Soil	X		31,		
-RDS002-55			Soil	X				

×.

Pg 2 of 23

××

Soil

××

Soil

- RDS002-60 - - - RDS002-65 - - - RDS002-70

-RDS002.75

REPORT NUMBER 20-351-0566 COMPLETED DATE ACCOUNT Dec 18, 2020 RECEIVED DATE 8722 Dec 16, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RDS003**

SOIL ANALYSIS REPORT

													AL AMMONI	UM ACE	TATE (EXC	HANGE	ABLE)											
LAB		MPLE		GANIC			IOSPHO				POTASS	SIUM	MAGNE	SIUM	CALC	IUM	SO	DIUM		pł		CATION EXCHANGE	PERCEN	IT BASE S	SATURA	TION	(COMPUTE	D)
NUMBER	IDENTI	FICATION		TTER	(WEAK	P ₁ (BRAY)	P ₂ (STRONG ² BF		OLSEN	NATE	K		Mg		C	а		Na		SOIL	BUFFER INDEX	CAPACITY	% K	% Mg		%	% H	% Na
374						1:7 N RATE	1:7 ppm F		Р		ppm	RATE	ppm	RATE	ppm	RATI	E ppr	m D/	ATE	pH 1:1	INDEX	C.E.C. meq/100g	r.	INIG		.d		INd
73668	BDSO	13-05	peres		ppin		ppin i	UTL	ppm	TUTE	ppiii	TUTL	ppm	TUTE	ppm	1011						meq/100g		-				
73669					L																							
73670					L																							
73672					L																							
73673					L																							
73674					L																							
73675					L																							
73676					L																							
73677					L																							
/30//	RDSU	53-45			L																							
							_											-										
LAB						ATE-N (FIA)							S	ULFUR S		ZINC Zn	٨		GANESE Mn	IRON Fe	С	OPPER Cu	BOR		EXCESS LIME	SOLUBLE SALTS	
NUMBER		SURFACE			SI	UBSOIL 1				SUBSC	DIL 2		Total		ICAP		DTPA			DTPA	DTPA		DTPA	SORB.		RATE	1:1	
374	ppm	lbs/A	depth (in)	ppm		lbs/A	depth (in)	pp	om	lbs/A		epth (in)	lbs/A	рр	om RA	TE	ppm	RATE	ppm	n RATE	ppm	RATE pr	om RATE	E ppm	RATE		mmhos/ cm RA	TE
73668	1	2	0-5										2	2														
73669	1	2	5-10)									2	2														
73670	1	2	10-1	5									2 2 2 2 3	2														
73672	1	2	15-20) C									2	2														
73673	1	2	20-2	5									2	2														
73674		3	25-30	D									3	:														
73675	3		30-3										4															
73676	4	6	35-40	D									6															
73677	5	8	40-4	5									8	;														

REV.10/17

REPORT NUMBER 20-351-0567 COMPLETED DATE ACCOUNT Dec 18, 2020 RECEIVED DATE 8722 Dec 16, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RDS004**

SOIL ANALYSIS REPORT

LAB SAMPLE ORGANIC PHOSPHORUS POTASSIUM MAGNESIUM CALCIUM SODIUM pH CATCIN PERCENT BASE SATURATION (C *374* IDENTIFICATION MATTER P OCISM OCISM MAGNESIUM MAGNESIUM Ca Na SOIL BUFFR CALCIUM %OLADET % % Mg %	COMPUTED) % % H Na
NUMBER IDENTIFICATION IMATIER P P P P OLSEN K Mg Ca Na Solt BUFFER CAPACITY % <	
374 percent RATE ppm ¹ /RATE ppm ¹ /RATE ppm ² /RATE ppm RATE ppm RATE <t< td=""><td>FI Na</td></t<>	FI Na
73678 RDS004A-05 73679 RDS004A-10 73680 RDS004A-15 73681 RDS004A-20 73681 RDS004A-25 73682 RDS004A-30 73683 RDS004A-35 73683 RDS004A-35 73684 RDS004A-35 73685 RDS004A-40 1 <th1< th=""> 1 1 <th1< th=""> <th1< td=""><td></td></th1<></th1<></th1<>	
73679 RDS004A-10 Image: Constraint of the second seco	
73680 RDS004A-15 73681 RDS004A-20 73682 RDS004A-25 73683 RDS004A-30 73684 RDS004A-35 73685 RDS004A-40	
73681 RDS004A-20 73682 RDS004A-25 73683 RDS004A-30 73684 RDS004A-35 73685 RDS004A-40	
73682 RDS004A-25 73683 RDS004A-30 73684 RDS004A-35 73685 RDS004A-40	
73683 RDS004A-30 73684 RDS004A-35 73685 RDS004A-40	
73684 RDS004A-35 73685 RDS004A-40	
73685 RDS004A-40	
1/3686IRDS004A-45	
73687 RDS004A-48	
	SOLUBLE
NUMBER SURFACE SUBSOIL 1 SUBSOIL 2 S Zn Mn Fe Cu B RATE ICAP DTPA DTPA DTPA DTPA DTPA DTPA SORB. DTPA NATE	SALTS 1:1
	mmhos/ cm RATE
73678 1 2 0-5 2 2	
73680 1 2 10-15 2	
73681 1 2 15-20 2	
73679 1 2 5-10 2 73680 1 2 10-15 2 73681 1 2 15-20 2 73682 3 4 20-25 4	
73683 2 3 25-30 3	
73684 1 2 2 73685 1 2 35-40 2 73686 1 2 40-45 2	
73686 1 2 40-45 2	
73687 1 1 45-48	

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-351-0567** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS004

SOIL ANALYSIS REPORT

												NEUTR	AL AMMONI	UM ACE	TATE (EXCI	IANGEA	BLE)									
LAB		MPLE		GANIC			HOSPHO	RUS			POTASS	IUM	MAGNES	SIUM	CALCI		SODI		р	i	CATION EXCHANGE	PERCEN	F BASE SAT	URATION	(COMPUTI	ED)
NUMBER	IDENTI	FICATION	I M	ATTER	0.07	P ₁ EAK BRAY)	P ₂ (STRONG ² BF			NATE	К		Mg		Ca		N	а	SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	% Na
374						1:7	1:7 ppm F		Р			RATE		RATE		RATE		RATE	pH 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca	п	ina
73688				cent RAT	c p		рртт г	VATE	ррп	NATE	ppm	NATE	ppm	NATE	ppm	NATE	ppm	NATE			meq/100g					
73689																										
73690																										
73691																										
73692																										
73693																										
73694	RDS00	04B-35																								
							_																			
LAB					NIT	RATE-N ((FIA)							S	ULFUR		ZINC	MA	NGANESE	IRON	C	OPPER	BORON	EXCESS LIME	SOLUBL	
NUMBER		SURFACE				SUBSOIL 1				SUBSC	NL 2		Tatal		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RATE	SALTS	
374			depth				depth					epth	Total Ibs/A												mmhos/	
	ppm 1	Ibs/A	(in)	pp	m	lbs/A	(in)	F	ppm	lbs/A	((in)			om RAT	Εp	pm RA	TE p	pm RATE	ppm	RATE pr	om RATE	ppm	RATE	cm R	ATE
73688	1	2	0-5										2													
73689	1	2	5-1																							
73690			10-1																							
73691	1		15-2										2													
73692	1		20-2										2 2 2 2 3													
73693	2		25-3																							
73694	1	2	30-3	5									2													

REV.10/17

REPORT NUMBER **20-351-0568** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS005

SOIL ANALYSIS REPORT

			_										RAL AMMONI				1										
LAB	-	MPLE		GANIC			IOSPHO	RUS			POTASS		MAGNES	SIUM	CALCI		SOD		р	I	CATION EXCHANGE		T BASE SA			<u> </u>	
NUMBER	IDENTI	FICATION		TTER		P ₁ (BRAY)	P ₂ (STRONG ² BF		OLSEN BICARBO	N NATE	К		Mg		Ca		N	la	SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca	% Н		% Na
374						1:7 n RATE	1:7 ppm F		Р		ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	1:1	INDEA	C.E.C. meq/100g	r.	ivig	Ca			INd
73695	PDSO		perc		ppin		ррпп		ррш	INAIL	ррп		ppiii		ррш		ppm				meq/100g						
73696							- 1																				
73697																											
73698																											
73699																											
73700																											
73701	RDSUC	19-39																									
					_		_							_				_									
LAB						ATE-N (FIA)						1	_ SI	ULFUR S		ZINC Zn	MA	NGANESE Mn	IRON Fe		OPPER Cu	BORO	N EXCE LIN RAT	ESS SOI	LUBLE	
NUMBER		SURFACE			S	UBSOIL 1		_		SUBS			Total		ICAP		DTPA		DTPA	DTPA		DTPA	SORB. D			1:1	
374	ppm	lbs/A	depth (in)	ppm	1	lbs/A	depth (in)	F	opm	lbs/A		lepth (in)	lbs/A	рр	om RAT	Έp	ipm RA	TE p	pm RATE	ppm	RATE p	om RATE	ppm	RATE	mmh cm		E
73695		2	0-5										2														
73696	1	2	5-10)									2														
73697	1	2	10-1	5									2 2														
73698	1		15-20										2														
73699	1		20-2										2														
73700			25-3										22														
73701	2	3	30-3	5									3														
														1													
														1													

REPORT NUMBER **20-351-0569** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS006

SOIL ANALYSIS REPORT

											NEUTR	AL AMMONI	UM ACE	TATE(EXCH	IANGEA	BLE)									
LAB		MPLE	ORG	-		PHOSPH	ORUS		Р	OTASSI	UM	MAGNES	SIUM	CALCI	JM	SODIL	JM	р		CATION EXCHANGE	PERCEN	T BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTI	FICATION	MAT	TER D. I.	P ₁ (WEAK BRAY)			OLSEN BICARBON/	ATE	К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	%
374				t RATE	1:7 ppm RAT	1:7		Р		ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	pH 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca		Na
73702		06-05	percen			. ppm		ppm n		ррш	INTE	ррш	INAIL	ррп	INAIL	ppm	INAIL			meq/100g					
73703																									
73703																									
73704																									
73706																									
73707																									
73708																									
73709																									
73711																									
73712	RDSOU	06-50																							
LAB				١	IITRATE-N								SU	JLFUR		ZINC Zn	MAN	NGANESE Mn	IRON	C	OPPER	BORON	LIME	SOLUBL SALTS	
NUMBER		SURFACE			SUBSOIL	1		SI	UBSOIL	_2		Total		S ICAP		Zn DTPA		IVIN DTPA	Fe DTPA		Cu dtpa	B SORB. DT	'PA	SALIS 1:1	
374	ppm	lbs/A	depth (in)	ppm	lbs/A	depth (in)	p	ppm	lbs/A		pth n)	lbs/A	рр	m RAT	E p	om RATI	E p	pm RATE	ppm	RATE pp	om RATE	ppm	RATE	mmhos/ cm R	ATE
73702	4	6	0-5									6													
73703	3	4	5-10									4													
73704	3	4 1	0-15									4													
73705	5	8 1	5-20									8													
73706	4	6 2	20-25									6													
73707	4	6 2	25-30									6													
73708	3	4 3	30-35									4													
73709	2	3 3	35-40									3													
73711	1	2 4	10-45									2													
73712	3	4 4	15-50									4													

REV.10/17

REPORT NUMBER **20-351-0569** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS006

SOIL ANALYSIS REPORT

									NEUTR	AL AMMONIU	JM ACETA	TE(EXCHA	NGEAB	ILE)				_	-				
LAB	SAMPLE	ORGANIC			HOSPHOR	US		POTAS	SIUM	MAGNES	IUM	CALCIUI	M	SODIUI	М	pl	Н	CATION EXCHANGE	PERCEN	T BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTIFICATION	MATTER	04/5 01	P ₁ BRAY)	P ₂ (STRONG ² BRA		EN	К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
374				1:7	1:7		Р									pH 1:1	INDEX	C.E.C.	к	Mg	Ca	Н	Na
		percent RA	E ppm	RATE	ppm RA	TE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
/3/13	RDS006-55																						
			NITR	ATE-N	(FIA)						I SUL	FUR.		ZINC	MAN	IGANESE	IRON		OPPER	BORON	EXCES	SOLUBL	E
LAB NUMBER	SURFACE			ATE-N UBSOIL 1			SUBS	DIL 2				.FUR S		ZINC Zn		IGANESE Mn	IRON Fe		OPPER Cu	BORON B	LIME	SALIS	
NUMBER		denth			1		SUBS		lenth	Total											RATE	SALIS 1:1	
		depth (in) pp	S			ppm	SUBS(depth (in)	Total Ibs/A		S AP		Zn dtpa		Mn dtpa	Fe dtpa		Cu	B SORB. DT	RATE	SALIS	
NUMBER	ppm lbs/A		S	UBSOIL 1	depth	ppm					IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	(in) pr	S	UBSOIL 1	depth	ppm				lbs/A	IC	S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	PA	SALIS 1:1 mmhos/	

REPORT NUMBER **20-351-0570** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS007

SOIL ANALYSIS REPORT

LAB SAMUE IDENTIFICATION ORGANIC UNMER PHOSPHORUS PHOSPHORUS PHOSPHORUS CALCUM SODUM opt PH CARCUM PH PHOSPHORUS PHOSPHORUS <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>AL AMMONI</th> <th>UM ACE</th> <th></th>						-								AL AMMONI	UM ACE													
NUMBER DENTIFICATION MATTER Note is note cause CASH is note cause K Mg Ca Na SOIL BUFFER CARACTLY % </td <td></td> <td></td> <td> ==</td> <td></td> <td></td> <td></td> <td>PF</td> <td>HOSPHC</td> <td>DRUS</td> <td></td> <td></td> <td>POTASS</td> <td>IUM</td> <td>MAGNES</td> <td>SIUM</td> <td>CALCI</td> <td>JM</td> <td>SODIL</td> <td>JM</td> <td>pl</td> <td></td> <td></td> <td>PERCEN</td> <td>T BASE SAT</td> <td>URATION</td> <td>I (COMPL</td> <td>ITED)</td> <td></td>			==				PF	HOSPHC	DRUS			POTASS	IUM	MAGNES	SIUM	CALCI	JM	SODIL	JM	pl			PERCEN	T BASE SAT	URATION	I (COMPL	ITED)	
374 Provent ART ptr AT pp BATE ppm BATE ppm </td <td>NUMBER</td> <td>IDENTIF</td> <td>ICATION</td> <td></td> <td></td> <td>P (WEAK</td> <td>1 BRAY)</td> <td></td> <td>RAY)</td> <td>OLSEN</td> <td>NATE</td> <td>K</td> <td></td> <td>Mg</td> <td></td> <td>Ca</td> <td></td> <td>Na</td> <td></td> <td></td> <td></td> <td>CAPACITY</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NUMBER	IDENTIF	ICATION			P (WEAK	1 BRAY)		RAY)	OLSEN	NATE	K		Mg		Ca		Na				CAPACITY						
T3714 RDS007-05 International part on part	*374*					1:	:7	1:7		Р		nnm	DATE	000	DATE	nnm	DATE		DATE		INDEX		r.	ivig	Ca			INd
73715 RDS007-10 73715 RDS007-10 RDS007-15 RDS007-20 RDS007-20 RDS007-20 RDS007-20 RDS007-20 RDS007-20 RDS007-30 RDS007-30 RDS007-30 RDS007-30 RDS007-40 SULFUR SULFUR ZINC MANGANESE IPON COPPER BORN NUME Soluble NUMBER SUBSOL1 SUBSOL2 SULFUR ZINC MANGANESE IPON COPPER BORN NUME Soluble Soluble <t< td=""><td></td><td></td><td>7-05</td><td>pere</td><td></td><td>ppm</td><td>IUTE</td><td>ppm</td><td>IUTE</td><td>ppin</td><td>TUTE</td><td>ppin</td><td>TUTE</td><td>ppin</td><td>TUTE</td><td>ppm</td><td>TUTE</td><td>ppm</td><td>TUTE</td><td></td><td></td><td>meq/100g</td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			7-05	pere		ppm	IUTE	ppm	IUTE	ppin	TUTE	ppin	TUTE	ppin	TUTE	ppm	TUTE	ppm	TUTE			meq/100g						_
Variable RDS007-15 Variable RDS007-20 Variable																												
Comparison Comparison <td></td>																												
Comparison Comparison Base of the second secon																												
Viscous																												
73720 RDS007-35 RDS007-40																												
C3721 RDS007-40 Image: Constraint of the second secon																												
LAB SURFACE NITRATE-N (FIA) SUBSOIL 1 SUBSOIL 2 Total SULFUR DTPA ZINC DTPA MANGANESE DTPA IRON DTPA COPPER BORON DTPA BORON B SORB. DTPA DCCS B SORB. DTPA SOLUBLE SALTS T11 *374* ppm lbs/A depth (m) ppm lbs/A depth (m) ppm RATE ppm																												
NUMBER SURFACE SUBSOIL 1 SUBSOIL 2 $Total libs/A$ S_{1CAP} Mn Te $DTPA$ Mn Te $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$																												
NUMBER SURFACE SUBSOIL 1 SUBSOIL 2 $Total libs/A$ S_{1CAP} Mn Te $DTPA$ Mn Te $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$																												
NUMBER SURFACE SUBSOIL 1 SUBSOIL 2 $Total libs/A$ S_{1CAP} Mn Te $DTPA$ Mn Te $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$ B $DTPA$	LAB					NITRA	TE-N (FIA)							SI	JLFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCES	SOLUE	BLE	
374 ppm lbs/A depth (in) ppm lbs/A depth (in) ppm lbs/A ppm RATE ppm <td></td> <td></td> <td>SURFACE</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>SUBSC</td> <td>DIL 2</td> <td></td> <td>T + 1</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RAT</td> <td>SALT</td> <td></td> <td></td>			SURFACE					,			SUBSC	DIL 2		T + 1	-										RAT	SALT		
73714 7 10 0-5 10	*374*	maa	lbs/A		maa		os/A		r	maa	lbs/A						= pr		Epr							mmhos/		
73715 5 8 5-10 73716 9 14 10-15 73717 6 9 15-20 73718 7 10 20-25 73719 5 8 25-30 73720 1 2 30-35	73714							()					(,	10							pp	pp		P.P.				
73716 9 14 10-15 73717 6 9 15-20 73718 7 10 20-25 73719 5 8 73720 1 2 30-35																												
73717 6 9 15-20 73718 7 10 20-25 73719 5 8 25-30 73720 1 2 30-35			-																									
73718 7 10 20-25 10 73719 5 8 25-30 8 73720 1 2 30-35 2																												
73719 5 8 25-30 73720 1 2 30-35																												
73720 1 2 30-35 2														8														
73721 1 2 35-40 2	73720	1	2	30-3	5									2														
	73721	1	2	35-4	C									2														
	1														1											1		

REV.10/17

REPORT NUMBER **20-351-0571** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS008

SOIL ANALYSIS REPORT

									AL AMMONIU	JM ACET	ATE (EXCHA	NGEABL	_E)										
LAB	SAMPLE	ORGANIC		HOSPHOR			POTASSI	UM	MAGNES	IUM	CALCIU	M	SODIU		pl		CATION EXCHANGE					(COMPUT	,
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)		Y) BICARBOI	NATE	K		Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY	% K	% Mg		% Ca	% H	% Na
374		percent RATE	1:7	1:7	TE ppm		ppm	RATE	ppm	RATE		RATE	ppm	RATE	рп 1:1	INDEX	C.E.C. meq/100g	r.	Ng		Ca	п	INd
	RDS008-05	percent NATE		ppin nA	пс ррпп	NAIL	ppm	NAIL	ррш	NAIL	ppm	NAIL	ррш	NATE			meq/100g				_		
	RDS008-10																						
	RDS008-15																						
	RDS008-20																						
	RDS008-25																						
	RDS008-30																						
73728	RDS008-35																						
LAB			NITRATE-N	(FIA)		_				SU	ILFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BO	RON	EXCESS	SOLUBL	
LAB NUMBER	SURFACE					SUBSOI	L2		Tatal	-	S		Zn		Mn	Fe		Cu		В	EXCESS LIME RATE	SALTS	
NUMBER		depth	SUBSOIL	depth			de	pth	Total lbs/A	-	S	I	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	depth (in) ppm			ppm	SUBSOI Ibs/A	de	epth in)	lbs/A	- I ppm	S	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722	ppm lbs/A	depth (in) ppm 0-5	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723	ppm lbs/A 1 2 1 1 2 5	depth (in) ppm 0-5 5-10	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724	ppm Ibs/A 1 2 5 1 2 5 1 2 1	depth (in) ppm 0-5 5-10 0-15	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724 73725	ppm Ibs/A 1 2 5 1 2 5 1 2 1 1 2 1 1 2 1	depth (in) ppm 0-5 5-10 0-15 5-20	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724 73725 73726	ppm lbs/A 1 2 5 1 2 5 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	depth (in) ppm O-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724 73725 73726 73727	ppm Ibs/A	depth (in) ppm 0-5 5 5-10 0 0-15 5 5-20 0 0-25 5 5-30 5	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724 73725 73726	ppm Ibs/A	depth (in) ppm O-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	depth			de		lbs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724 73725 73726 73727	ppm Ibs/A	depth (in) ppm 0-5 5 5-10 0 0-15 5 5-20 0 0-25 5 5-30 5	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724 73725 73726 73727	ppm Ibs/A	depth (in) ppm 0-5 5 5-10 0 0-15 5 5-20 0 0-25 5 5-30 5	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73722 73723 73724 73725 73726 73727	ppm Ibs/A	depth (in) ppm 0-5 5 5-10 0 0-15 5 5-20 0 0-25 5 5-30 5	SUBSOIL	depth			de		Ibs/A	- ppm	S	I	Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	SORE	B 5. dtpa	LIME RATE	SALTS 1:1 mmhos/	

REV.10/17

REPORT NUMBER 20-351-0572 COMPLETED DATE ACCOUNT Dec 21, 2020 RECEIVED DATE 8722 Dec 16, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RDS009**

SOIL ANALYSIS REPORT

	MPLE										NGEABL	,									
NUMBER IDENTI		ORGANIC		HOSPHORI	US	POTA	SSIUM	MAGNES	IUM	CALCIU	М	SODIUN	N	pl		CATION EXCHANGE	PERCENT	F BASE SAT	URATION	(COMPUT	ED)
	FICATION	MATTER	P, (WEAK BRAY)		OLSEN BICARBONAT	F	К	Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	%	%	%	% H	% Na
374		percent RATE	1:7 ppm RATE	1:7	P		DATE		RATE		DATE		RATE	рН 1:1	INDEX	C.E.C. meq/100g	К	Mg	Ca	п	ina
73729 RDS00		percent MATE	ppm KATE	ррп ка	с ррп ка	E ppm	RATE	ppm	NATE	ppm	RATE	ppm	NATE			meq/100g					
73730 RDS00																					
73731 RDS00																					
73732 RDS00																					
73733 RDS00																					
73734 RDS00																					
73735 RDS00																					
73736 RDS00																					
73737 RDS00																					
73738 RDS00)9B-05																				
LAB		l I	NITRATE-N (FIA)					SU	LFUR		ZINC		GANESE	IRON	C	OPPER	BORON	EXCESS LIME	SOLUBL	
NUMBER	SURFACE		SUBSOIL 1		SUI	BSOIL 2		Total		S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DTI	RATE	SALTS	
374 _{ppm}		depth (in) ppm	lbs/A	depth (in)	ppm It	os/A	depth (in)	lbs/A	ppm	n RATE	ppr	n RATE	ppn	n RATE	ppm	RATE pp	om RATE	ppm f	RATE	mmhos/ cm R	ATE
73729 3	4 ()-5						4													
73730 2	3 5	-10						3													
73731 5	8 10)-15						8													
73732 4	6 15	5-20						6													
73733 2	3 20)-25						3													
73734 1	2 25																				
73735 1	2 30							2 2 2 2													
73736 1	2 35							2													
73737 1	2 40							2													
73738 24)-5						36													

REV.10/17

REPORT NUMBER **20-351-0572** COMPLETED DATE Dec 21, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS009

SOIL ANALYSIS REPORT

	-		_		_								NEU	TRAL A	MMONIL	JM ACE	TATE(EXCH	ANGEA	BLE)					-					
LAB	SA	MPLE		ORGAN	-		PH	HOSPH	ORU	S		POTA	SSIUM	MA	AGNES	IUM	CALCI	JM	SODI	UM	р	Н	CATION EXCHANGE	PERCEN	IT BASE S	ATURA	TION	(COMPUTE	D)
NUMBER	IDENTI	FICATION	1	L.O. I	ER	(WEAK B	DAV	P ₂ (STRONG	DDAV)		N		К		Mg		Ca		N	а	SOIL	BUFFER	CAPACITY	%	%	%		%	%
374						1:7	7	1:7	,	F	>			_							pH 1:1	INDEX	C.E.C.	К	Mg	C	.a	Н	Na
		00 0 40	-	percent	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RAT	IE I	ppm	RATE	ppm	RATE	ppm	RATE	-		meq/100g						
73739	RDSO	J9B-10																											
73740	RDS00	09B-15																											
73741	RDS00	09 B- 20																											
73742	RDS00	09B-25																											
LAB				-	N	ITRAT	Е-N (FIA)			-		-			S	ULFUR	T	ZINC	MA	NGANESE	IRON	C	OPPER	BOR	NC	EXCESS LIME	SOLUBLE	
NUMBER		SURFACE					SOIL 1				SUBS	OIL 2				-	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB.		RATE	SALTS	
374	ppm	lbs/A	dept (in)		ppm	lbs	s/A	depth (in)	n	ppm	lbs/		depth (in)		Total lbs/A	рр	m RAT	E pr		TE p	pm RATE			om RATE		RATE		mmhos/ cm RA	ιΤΕ
73739	4	6	5-1	10											6														
73740	5	8	10-	15											8			Ŀ											
73741	4	6	15-	20											6			Ŀ											
73742	4	6	20-	25											6														

REV.10/17

REPORT NUMBER **20-351-0573** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS010

SOIL ANALYSIS REPORT

									NEUTRA	AL AMMONIU	M ACETA	TE(EXCHA	NGEAB	LE)									
LAB	SAMPLE		ANIC		HOSPHOR			POTASSI	UM	MAGNESI	UM	CALCIU	М	SODIU	М	р		CATION EXCHANGE	PERCEN	T BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTIFICATIO		.0.1.	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRAY) BICARB	N ONATE	К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	% Mg	% Ca	% H	% Na
374			nt RATE	1:7	1:7	·	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	pH 1:1	INDEX	C.E.C. meq/100g	ĸ	ivig	Ca		INd
73743	RDS010-05																						
	RDS010-10																						
	RDS010-15																						
	RDS010-20																						
	RDS010-25																						
	RDS010-30																						
73750	RDS010-35																						
73751	RDS010-40																						
73752	RDS010-45																						
73753	RDS010-50																						
LAB			١	NITRATE-N	(FIA)							FUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	
NUMBER	SURFACE	1		SUBSOIL 1	i		SUBSC	DIL 2		Total		S AP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RATE	SALTS	
374	ppm lbs/A	depth (in)	ppm	lbs/A	depth (in)	ppm	lbs/A	dep (ir		lbs/A	ppm	RATE	ppi	m RATE	pp	m RATE	ppm	RATE pr	om RATE	ppm	RATE	mmhos/ cm R	ATE
73743	10 15	0-5								15													
73744	4 6	5-10								6													
73745		10-15								3													
73746	5 8	15-20								8													
73747		20-25								69													
73748		25-30								88			L										
73750		30-35								63													
73751		35-40								63													
73752		40-45								28													
73753	7 10	45-50								10												1	

REV.10/17

REPORT NUMBER **20-351-0573** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RDS010

SOIL ANALYSIS REPORT

													NEUTR	AL AMMON	UM ACE	TATE (EXCH)	ANGEA	BLE)									
LAB	SA	MPLE		DRGAI			Pł	HOSPH	ORUS	5		POTASS	SIUM	MAGNE	SIUM	CALCIU	M	SODIU	М	p	Н	CATION EXCHANGE	PERCEN	T BASE SAT	FURATION	(COMPUT	ED)
NUMBER	IDENTI	FICATION		L.O.	ER	P (WEAK		P ₂	DDAV)		N	K		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
374						1:	.7	1:7		P	,									pH 1:1	INDEX	C.E.C.	К	Mg	Ca	Н	Na
			р	ercent	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
73754	RDS01	10-55																									
73755	RDS01	10-60																									
73756	RDS01	10-64																									
LAB					Ν		TE-N (FIA)							S	ULFUR S		ZINC Zn	MAN	IGANESE Mn	IRON	С	OPPER Cu	BORON	LIME	SOLUBL SALTS	
NUMBER		SURFACE				SUE	BSOIL 1				SUBS	DIL 2		Total		ICAP		DTPA		DTPA	Fe DTPA		DTPA	D SORB. DI	'PA	5ALT5 1:1	
374	ppm	lbs/A	dept (in)		ppm	lk	os/A	depth (in)		ppm	lbs/A		lepth (in)	lbs/A	pp	om RATE	p	pm RATE	рр	om RATE	ppm	RATE pr	om RATE	ppm	RATE	mmhos/ cm R	ATE
73754	6	9 (50-	55										g	2												
73755	11	16	55-	60										16	;												
73756	7	8	60-	64										8													

REV.10/17

REPORT NUMBER 20-330-0074 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS001**

SOIL ANALYSIS REPORT

				_							AL AMMON		1		1				i					
LAB		MPLE	ORGANI MATTER			HOSPHOR			POTASS		MAGNE		CALC		SODI		р	1	CATION EXCHANGE		r	1	(COMPUT	
NUMBER	IDENTIF	ICATION	L.O. I.	(\	P1 WEAK BRAY)	P ₂ (STRONG ² BRA) BICAR	SEN BONATE	К		Mg		Ca	3	N	а	SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca	% H	% Na
372			percent RA	TE	1:7 ppm RATE	1:7 ppm RA	TE ppm	P RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	1:1		meq/100g					
72393	RSS001	-01-03																						
72394	RSS001	-01-06																						
72395	RSS001	-01-09																						
72396	RSS001	-01-12																						
72397	RSS001	-01-15																						
72398	RSS001	-02-03																						
72399	RSS001	-02-06																						
72400	RSS001	-02-09																						
72401	RSS001	-02-12																						
72402	RSS001	-02-15																						
LAB				Nľ	TRATE-N ((FIA)						S	SULFUR		ZINC	MAN	NGANESE	IRON	C	OPPER	BORON	N EXCESS LIME	SOLUBL	
NUMBER		SURFACE			SUBSOIL 1			SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D	RATE		
372	ppm	lbs/A	depth (in) p	pm	lbs/A	depth (in)	ppm	lbs//		lepth (in)	Ibs/A	p	pm RA	re p	ipm RA	TE pr	pm RATE	ppm	RATE p	om RATE	ppm	RATE	mmhos/ cm R	ATE
72393	3	3	0-3								3	3												
72394	1	1	3-6								1													
72395	1	1	6-9								1													
72396	3	3	9-12								3	3												
72397	4	4 1	2-15								Δ	1												
72398	4	4	0-3								Z	1												
72399	1	1	3-6								1													
72400	1	1	6-9								1													
72401	1	1 !	9-12								1													
72402	2	2 1	2-15								2	2												

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0074 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS001**

SOIL ANALYSIS REPORT

72403 4 4 0-3 4	JTED) % Na
NUMBER IDENTIFICATION IMATLEN P OCSEN K Mg Ca Na SOIL BUFFER CAPACETY % Mg Ca H *372* Percent RATE Ppm RXTE P	
**372* precent RATE prim RATE ppm RATE pm RATE pm RATE pm RATE pm RATE pmm RATE pm	INd
72403 RSS001-03-03 RSS001-03-03 RSS001-03-06 PPR MM PR	
72404 RSS001-03-06 RSS001-03-09 RSS001-03-09 RSS001-03-09 RSS001-03-12 RSS001-03-12 RSS001-03-15 RSS001-04-03 RSS001-04-03 RSS001-04-03 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-03 RSS001-04-06 RSS001-04-04 RSS001-04-04 RSS001-04-05 RSS001-04-05 RSS001-04-05 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-05 RSS001-04-05 RSS001-04-05 RSS001-04-05 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-05 RSS001-04-05 RSS001-04-05 RSS001-04-06 RSS001	
72405 RSS001-03-09 RSS001-03-12 RSS001-03-12 RSS001-03-15 RSS001-03-15 RSS001-04-03 RSS001-04-03 RSS001-04-03 RSS001-04-06 RSS001	
72406 RSS001-03-12 RSS001-03-15 RSS001-03-15 RSS001-04-03 RSS001-04-03 RSS001-04-03 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-06 RSS001-04-09 RSS001-04-09 RSS001-04-09 RSS001-04-09 RSS001-04-09 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-13 RSS001	
72407 RSS001-03-15 RSS001-04-03 72408 RSS001-04-03 72409 RSS001-04-06 72410 RSS001-04-04 72410 RSS001-04-05 72411 RSS001-04-12 72412 RSS001-04-12 72412 RSS001-04-15 Image: Subscript of the state of the st	
72408 RSS001-04-03 RSS001-04-03 RSS001-04-09 RSS001-04-09 RSS001-04-09 RSS001-04-09 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-13 Image: Comparison of the comparison of t	
72409 RSS001-04-06 RSS001-04-09 RSS001-04-09 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-15 Image: Comparison of the	
72410 RSS001-04-09 RSS001-04-12 RSS001-04-12 RSS001-04-12 RSS001-04-15 Image: Comparison of the comparison	
72411 72412 RSS001-04-12 RSS001-04-15 RSS001-04-12 RSS001-04-12 RSS001-04-15 Image: Comparison of the co	
72412 RSS01-04-15 Image: Support of the section of the sectin of the section of the section of the sectin of the section of t	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
NUMBER SURFACE SUBSOIL SUBSOIL SUBSOIL Total libs/A Total libs/A Mn DTPA Fe DTPA Cu DTPA B SORB. DTPA SALTS *372* ppm lbs/A depth (in) ppm lbs/A lbs/A is lbs/A is lbs/A lbs/A is lbs/A lbs/A lbs/A lbs/A	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BLE
372 ppm lbs/A depth (in) ppm lbs/A depth (in) ppm lbs/A ppm RATE	
72403 4 4 0-3 4 4	
72404 1 1 3-6 1 1 1	
72405 2 2 6-9 2	
72406 2 2 9-12 2	
72407 3 3 12-15 3	

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0074** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RSS001

SOIL ANALYSIS REPORT

												RAL AMMON	IUM ACE	TATE (EXCH	ANGEA	BLE)									
LAB	-	MPLE		GANIC		PH	OSPHORU	IS		POTAS	SIUM	MAGNE	SIUM	CALCI	JM	SODIL	JM	р		CATION EXCHANGE	PERCEN	F BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTI	FICATION	N .	TTER	P ₁ (WEAK BRA	w 10	P ₂ STRONG ² BRAY)		N ONATE	1	К	Mg		Ca		Na	I	SOIL	BUFFER INDEX	CAPACITY	%	%	%	%	%
372					1:7		1:7	F	>		DATE		DATE		DATE		DATE	pH 1:1	INDEX	C.E.C.	к	Mg	Ca	Н	Na
				ent RATE	ppm R	AIE	ppm RATI	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
72413	RSSOO	1-05-03	3																						
72414	RSSOO	1-05-06	6																						
72415	RSS00	1-05-09)																						
72416	RSS00	1-05-12	2																						
72417	RSS00	1-05-15	5																						
LAB					NITRATE-	N (F	IA)						S	ULFUR		ZINC	MAN	NGANESE	IRON	C	OPPER	BORON	EXCESS LIME	SOLUBL	.E
NUMBER		SURFACE			SUBSC				SUBS	OIL 2				S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RATE	SALTS	
372	PP	lbs/A	depth (in)	ppm	lbs/A		depth (in)	ppm	lbs/A		depth (in)	Total Ibs/A		om RATI	E p	pm RATI	E pi	pm RATE			om RATE		RATE	mmhos/	ATE
72413	5	4	0-3									Z	4												
72414	2	2	3-6									2	2												
72415	2	2	6-9									2	2												
72416	2	2	9-12	2								2	2												
72417	2	2	12-1	5								2	2												

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

P3. 10f 21			37272393 — 37272417	Notes									10 m							しま
	dy Form	>/ 1436 / 1436	37	Lab #/Order #	(Internal Use)												「「「「「「」」」		1	(2)
	Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form t & Bill To: Dick Ehrman Lower Platte South NRD P.O. Box 83581 Lincoln, NE 68501-3581 Phone: (402) 476-2729	Date/Time: 11-23-2020/ Date/Time: 11-23-2002/ Date/Time:	Date/Time: ///2// 20 Date/Time: ///24/2	Tests Requested	Nitrate-N	X	X	X	X	X	X	×	X	×	X	×	X	×	X	ć)
	Platte South Na' e Sampling Prog Dick Ehrman Lower Platte So P.O. Box 83581 Lincoln, NE 685 Phone: (402) 4				Matrix	Soil	Soll	soil	Soil	Soil	Soil	Soil	Soil							
	Lower Pla Vadose Zone S Report & Bill To: D Lo Li Li P		10		Time	1146	1147	6411	1150	1151	1209	1210	1711	1213	4171	1230	12.33	1133	1235	
	Report	M. O. Y.	M. B.S		Date	11-17-2020	0202-21-11	0202-61-11	0/02-11-11	0202-11-11	mar-61-11	prot- L1-1)	M02-L1-11	0202-11-11	01.0711-11	0107-11-11	0202-11-11	0202-21-11	0702-11-11	
	Account #: 8722	Relinquished By (Signature): Received By (Signature): Relinquished By (Signature): Received By (Signature):	Relinquished By (Signature): Received By (Signature):		Sample #	RSS001-01-03	RSS001-01-06	RSS001-01-09	RSS001-01-12	RSS001-01-15	RSS001-02-03	RSS001-02-06	RSS001-02-09	RSS001-02-12	RSS001-02-15	RSS001-03-03	RSS001-03-06	RSS001-03-12	RSS001-03-15	

ì

Custody
Chain-of
Program (
Sampling
ose Zone
ND Vado
LPSNF

p. 2 of 21

RSS001-04-03 RSS001-04-06 PSS001-04-06	1	Time	Matrix	Nitrate-N	(Internal Use)	
04-06	012-11-11	11.57	Soil	X		
PCC001-00-00	11-11-2020	1253	Soil	X		
00-10	0202-61-11	1255	Soil	X		
RSS001-04-12	0202-11-11	1257	Soil	X		
RSS001-04-15	11-17-2020	1253	Soil	X		
RSS001-05-03	1-17-2020	1317	Soil	X		
RSS001-05-06	11-17- 2020	1318	Soil	X		
RSS001-05-09	P202 -L1-11	1319	Soil	X		
RSS001-05-12	11-17-2020	1320	Soil	X	The second second second	
RSS001-05-15	11-17-2620	1321	Soil	x	A STATE OF STATE	
					25 25	対対回
				37272	37272393 - 37272417	21
				State of Carlos		
						and the second se

4

REPORT NUMBER 20-330-0075 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS003**

SOIL ANALYSIS REPORT

													AL AMMON	NUM ACE	TATE (EXC	HANGEA	BLE)										
LAB		MPLE		ANIC		PF	HOSPHC	DRUS			POTASS	SIUM	MAGNE	SIUM	CALC	IUM	SODIU	JM	р		CATION EXCHANGE	PERCEN	F BASE SA	TURATIC	DN (C	OMPUTE	D)
NUMBER	IDENTI	FICATION		ITER .o. i.	P ₁ (WEAK BR		P ₂ (STRONG ² B	RAV)			К		Mg	J	C	a	Na	1	SOIL	BUFFER INDEX	CAPACITY	% K	%	%		% H	%
372				nt RATE	1:7	RATE	1:7		Р		ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	pH 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca			Na
72418		2 01 02			ppm	NATE	ppm		ppm	NAIL	ррш	NAIL	ррп	NATE	ppm	NATE	ppm	NATE			meq/100g						
72419																											
72420																											
72421																											
72422																											
72424																											
72425																											
72426																											
72427																											
72428	RSS00	3-02-15																									
LAB				1	VITRATE	E-N (FIA)							S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	N EXC	CESS SIME	SOLUBLE	
NUMBER		SURFACE			SUBS	OIL 1				SUBS	OIL 2		Total		S		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	RA	ATE	SALTS	
372	ppm	lbs/A	depth (in)	ppm	lbs/	A	depth (in)		ppm	lbs//		epth (in)	lbs/A	pp		TE p	pm RAT	E pr	om RATE			om RATE		RATE		mhos/ cm RAT	ТЕ
72418	1	1	0-3										-	1													
72419	1	1	3-6											1													
72420	1	1	6-9											1													
72421	1	1	9-12											1													
72422	1	1	12-15										· /	1													
72424	1	1	0-3										·	1													
72425	1	1	3-6										.	1													
72426	1	1	6-9										.	1													
72427		1	9-12										.	1													
72428	1	1	12-15										.	1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0075 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS003**

SOIL ANALYSIS REPORT

											AL AMMON	IUM ACET	ATE (EXCH)	ANGEAE	BLE)										
LAB		MPLE	ORGA			PHOSPHO	ORUS		POTASS	IUM	MAGNE	SIUM	CALCIU	M	SODIU	M	р	Н	CATION EXCHANGE	PERCEN	F BASE SA	TURATIO	ON (CC	OMPUTED))
NUMBER	IDENTI	FICATION			P ₁ (WEAK BRAY)			LSEN RBONATE	к		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%		% H	% Na
372				RATE	1:7 ppm RAT	1:7		P m RATE		RATE		RATE		RATE	ppm	RATE	рН 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca			ina
		0.00.00	-	. NATE	ррп ка	_ ppm	NATE PL		ppm	NATE	ppm	NATE	ppm	NATE	ррп	NATE			meq/100g						
72429																									
72430																									
72431																									
72432																									
72433																									
72434																									
72435																									
72436																									
72437																									
72438	RSS00	3-04-15																							
LAB				١	IITRATE-N	(FIA)						SU	ILFUR		ZINC	MAN	GANESE	IRON	C	OPPER	BORON	N EX	KCESS S	SOLUBLE	
NUMBER		SURFACE			SUBSOIL	1		SUBS	DIL 2				S		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D	R	RATE	SALTS	
372			depth			depth				epth	Total lbs/A													mhos/	-
72429	ppm	lbs/A 1	(in) 0-3	ppm	lbs/A	(in)	ppm	lbs/A	(in)	1	ppn	n RATE	pp	om RATE	E pp	m RATE	ppm	RATE pr	om RATE	ppm	RATE	-	cm RAT	E
72429		1	3-6								1														
72430		1	6-9								1														
	1	1																							
72432		1	9-12																						
					1	1																			
72433	2		12-13																						
72434	1	1	0-3								1														
72434 72435	1 1	1 1	0-3 3-6								1			L											
72434 72435 72436	1 1 1	1 1 1	0-3 3-6 6-9								1 1 1					L									
72434 72435	1 1 1 2	1 1 1 2	0-3 3-6								1 1 1 2	2													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0075** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD

LINCOLN NE 68501-3581

CHRIS WITTHUHN

PO BOX 83581

www.midwestlabs.com

VADOSE ZONE SAMPLING PROGRAM

RSS003

SOIL ANALYSIS REPORT

			_		_				[NEUTR	AL AMMON	UM ACE	TATE (EXCH)	ANGEAE	BLE)					_				
LAB	SA	AMPLE		GANIC		PH	HOSPHOR	US		POTAS	SIUM	MAGNE	SIUM	CALCIU	M	SODIU	М	pl	Н	CATION	PERCENT	BASE SA	TURATION	(COMPUTE	ED)
NUMBER	IDENT	IFICATION	•	ATTER	P. (WEAK	1	P ₂	OLS	EN	К	[Mg		Ca		Na		SOIL	BUFFER	EXCHANGE CAPACITY	%	%	%	%	%
270				L.O. I.		BRAY) :7	(STRONG ² BRA 1:7	Y) BICARE	P P									pH 1:1	INDEX	C.E.C.	К	Mg	Ca	Н	Na
372				ent RATE			ppm RA	TE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	1.1		meq/100g					
72439	RSS00	03-05-03	3																						
72440	RSS00	03-05-06	5																						
72441	RSSOC	03-05-09)																						
72442	RSS00)3-05-12	2																						
72443	RSSOC)3-05-15	5																						
LAB					NITRA	TE-N (FIA)						S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	
NUMBER		SURFACE			SUE	BSOIL 1			SUBSO	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	RATE "PA	SALTS	
372	ppin	lbs/A	depth (in)	ppm	ı Ib	os/A	depth (in)	ppm	lbs/A		depth (in)	Ibs/A		om RATE	pp	om RATE					om RATE		RATE	mmhos/	ATE
72439	1	1	0-3									1													
72440	1	1	3-6									1			L										
72441	1	1	6-9									1			L										
72442	1	1	9-12	2								1													
72443	1	1	12-1	5								1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

pg. 3 of 21

re):	35 Date Date [1-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020	Time Time 1224 1225 1228 1243 1243 1249 1249 1249 1240 1310	Lower Platte Sc P.O. Box 83581 Lincoln, NE 689 Phone: (402) 4 Dat Dat Dat Dat Soil Soil Soil Soil Soil Soil Soil Soil	iuth NRD 501-3581 76-2729 e/Time: e/Time: e/Time: e/Time: e/Time: fertime: e/Time: e/Time: rate-N rate-N x x x x x x x x x x x x x x x x x x x	Image: Solution in the second seco
RSS003-03-06 RSS003-03-09	1-18-2020	13/1	Soil	××	1
RSS003-03-12	chal -11-11	1313	Soil	×	
RSS003-03-12 [3	0202-81-11	-	Soil	X	

.

Notes															50 2 BH	,423,462	60471718-91717403														
Lab #/Order #	(Internal Use)											_			おが回	010	3/2														
luested																															
Tests Requested	Nitrate-N	Х	Х	Х	Х	Х	Х	Х	x	Х	Х	X	X	X	×	X	X	X	×	×	X	×	X	×	×	X	X	X	Х	X	×
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil .	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil									
	Time	1333	1334	1335	1336	1337	1356	1357	1358	1359	0041	14 SS	14500	1456	1457	1458	1016	1017	1018	1019	1020	1049	1050	1051	1052	1053	1114	1115	1116	L111	1118
	Date	11-18-2020	11-18-2020	11-18-2020	-	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-17-2020	11-17-2020	0202-21-11	0202-21-11	0202-11-11	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020
	Sample #	RSS003-04-03	RSS003-04-06	RSS003-04-09	RSS003-04-12	RSS003-04-15	RSS003-05-03	RSS003-05-06	RSS003-05-09	RSS003-05-12	RSS003-05-15	RSS004-01-03	RSS004-01-06	RSS004-01-09	RSS004-01-12	RSS004-01-15	RSS004-02-03	RSS004-02-06	RSS004-02-09	RSS004-02-12	RSS004-02-15	RSS004-03-03	RSS004-03-06	RSS004-03-09	RSS004-03-12	RSS004-03-15	RSS004-04-03	RSS004-04-06	RSS004-04-09	RSS004-04-12	RSS004-04-15

Notes			and a second						ti	Service and a state of the service o			All		
	N. a. a.		111							ALCONTANT -					
Lab #/Order # (Internal Use)							37772418 27979 AGO	R0+71710-01							
ested	100						727924-				1				
Tests Requested Nitrate-N	X	X	X	×	×										
Matrix	Soil	Soil	Soil	Soil	Soil										
Time	141	1142	1143	1144	IHS										
Date	1-18-2020	11-18-2020	11-13-2020	11-18-2020	11-18-2020										
Sample #	RSS004-05-03	RSS004-05-06	RSS004-05-09	RSS004-05-12	RSS004-05-15										

REPORT NUMBER 20-330-0076 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS004**

SOIL ANALYSIS REPORT

		_								AL AMMON	IUM ACE	TATE(EXCH	ANGEAB										
LAB	SAMPLE	ORGA	-		HOSPHO	RUS		POTASS	NUI	MAGNE	SIUM	CALCIU	JM	SODIU	M	р	I	CATION EXCHANGE	PERCEN	F BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTIFICATION	MAT L.C		P ₁ (WEAK BRAY)	P ₂ (STRONG ² BF		SEN	К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	% Na
372				1:7	1:7		Р		RATE		DATE		DATE		DATE	рН 1:1	INDEX	C.E.C.	ĸ	Mg	Ca		ina
	DOO OO 4 04 00	percent	t RATE	ppm RATI	ppm F	ATE ppn	n KAIE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
	RSS004-01-03																						
	RSS004-01-06																						
	RSS004-01-09																						
	RSS004-01-12																						
	RSS004-01-15																						
	RSS004-02-03																						
72450	RSS004-02-06																						
72451	RSS004-02-09																						
72452	RSS004-02-12																						
72453	RSS004-02-15																						
LAB			Ν	IITRATE-N	(FIA)						S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	E
NUMBER	SURFACE			SUBSOIL			SUBS	OIL 2			-	S		Zn		Mn	Fe		Cu	В	LIME	SALTS	
070		depth			depth			d	epth	Total lbs/A		ICAP		DTPA		DTPA	DTPA		DTPA	SORB. DT	PA	1:1 mmhos/	
372	ppm Ibs/A	(in)	ppm	lbs/A	(in)	ppm	lbs//		(in)		рр	m RATE	pp	om RATE	рр	om RATE	ppm	RATE pp	om RATE	ppm	RATE	cm R	ATE
72444		0-3								1													
72445		3-6								1													
72446		6-9								1													
72447	1 1 9	9-12								1													
72448	1 1	2-15								1													
72449	1 1	0-3								1													
72450	1 1	3-6								1													
72451	1 1	6-9								1													
72452	1 1 9	9-12								1													
72453		2-15								1													

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0076 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS004**

SOIL ANALYSIS REPORT

		_								TATE (EXCHA	ANGEAB										
LAB	SAMPLE	ORGANIC		HOSPHOR		_	SSIUM	MAGNE	SIUM	CALCIU	М	SODIUI	М	р		CATION EXCHANGE	PERCENT	BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)		OLSEN BICARBONAT	F	К	Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	%
372			1:7	1:7	E ppm RAT		RATE		RATE		RATE		RATE	рН 1:1	INDEX	C.E.C. meq/100g	К	Mg	Ca	н	Na
	DOCOO 4 00 00	percent RATE		рртт кат	с ррп ка	E ppm	I NATE	ppm	NATE	ppm	NATE	ppm	NATE			meq/100g					
	RSS004-03-03																				
	RSS004-03-06																				
	RSS004-03-09																				
	RSS004-03-12																				
	RSS004-03-15																				
	RSS004-04-03																				
	RSS004-04-06																				
	RSS004-04-09																				
	RSS004-04-12																				
72464	RSS004-04-15																				
LAB		1	NITRATE-N	(FIA)					SI	ULFUR		ZINC	MAN	GANESE	IRON	C	OPPER	BORON	EXCES	JOLODE	
NUMBER	SURFACE		SUBSOIL 1		SUI	SOIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	PA RATE	SALTS	
372	ppm lbs/A	depth (in) ppm	lbs/A	depth (in)	ppm lt	is/A	depth (in)	lbs/A	рр	om RATE	рр	m RATE	ppr	n RATE	ppm	RATE pp	m RATE	ppm	RATE	mmhos/ cm R	ATE
72454	1 1	0-3						1													
72455	1 1	3-6						1													
72456	1 1	6-9						1													
72457	1 1 9	9-12						1													
72458	1 1	2-15						1													
72459	1 1	0-3						1													
72460	1 1	3-6						1													
72461	1 1	6-9						1													
72463	1 1 9	9-12						1													
72464	1 1	2-15						1													

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0076** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RSS004

K55004

SOIL ANALYSIS REPORT

	-												NEUTF	AL AMMON	NUM ACI	ETATE (EX	CHANG	EABLE)					-	-						
LAB	S	AMPLE		RGA			Pł	IOSPH	ORUS	5		POTASS	SIUM	MAGNE	SIUM	CAL	CIUM	5	SODIUN	N	pl	H	CATION EXCHANGE	PERCE	INT	BASE SAT	URATIO	ON (C	OMPUTE	D)
NUMBER	IDENT	IFICATION	A N	L.O.	ER	P1 (WEAK E	DAVO	P ₂		OLSEN	N	К		Mg	J	0	Ca		Na		SOIL	BUFFER	CAPACITY	%		%	%		%	%
372						1:7	7	1:7		P											pH 1:1	INDEX	C.E.C.	К		Mg	Ca		Н	Na
			_	ercent	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RAT	TE p	opm	RATE			meq/100g					_		
72465	RSSO	04-05-03	3																											
72466	RSS00	04-05-06	3																											
72467	RSSO	04-05-09)																											
72468	RSSO	04-05-12	2																											
72469	RSSO	04-05-15	5																											
LAB					N	ITRAT	E-N (FIA)							S	SULFUR		ZIN	IC	MAN	GANESE	IRON		OPPER		BORON	EX	KCESS LIME	SOLUBLE	
NUMBER		SURFACE				SUB	SOIL 1				SUBS	OIL 2				S ICAP		Zr DTP			Mn dtpa	Fe DTPA		Cu dtpa		B SORB. DTI	R	RATE	SALTS	
372	ppm	lbs/A	dept (in)		ppm	lbs	5/A	depth (in)		ppm	lbs//		lepth (in)	Total Ibs/A	q		ATE	ppm	RATE					om RA	TE		RATE	n	nmhos/	ATE
72465		1	0-:												_															
72466	1	1	3-0	6											1															
72467	1	1	6-9	9											1															
72468	1	1	9-1	2											1															
72469	1	1	12-	15											1															

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days. In reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference

pg. 3 of 21

re):	35 Date Date [1-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020 11-18-2020	Time Time 1224 1225 1228 1243 1243 1249 1249 1249 1240 1310	Lower Platte Sc P.O. Box 83581 Lincoln, NE 689 Phone: (402) 4 Dat Dat Dat Dat Soil Soil Soil Soil Soil Soil Soil Soil	iuth NRD 501-3581 76-2729 e/Time: e/Time: e/Time: e/Time: e/Time: fertime: e/Time: e/Time: rate-N rate-N x x x x x x x x x x x x x x x x x x x	Image: Solution in the second seco
RSS003-03-06 RSS003-03-09	1-18-2020	13/1	Soil	××	1
RSS003-03-12	chal -11-11	1313	Soil	×	
RSS003-03-12 [3	0202-81-11	-	Soil	X	

.

Notes															50 2 BH	,423,462	60471718-91717403														
Lab #/Order #	(Internal Use)											_			おが回	010	3/2														
luested																															
Tests Requested	Nitrate-N	Х	Х	Х	Х	Х	Х	Х	x	Х	Х	X	X	X	×	X	X	X	×	×	X	×	X	×	×	X	X	X	Х	X	×
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil .	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil									
	Time	1333	1334	1335	1336	1337	1356	1357	1358	1359	0041	14 SS	14500	1456	1457	1458	1016	1017	1018	1019	1020	1049	1050	1051	1052	1053	1114	1115	1116	L111	1118
	Date	11-18-2020	11-18-2020	11-18-2020	-	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-17-2020	11-17-2020	0202-21-11	0202-21-11	0202-11-11	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020	11-18-2020
	Sample #	RSS003-04-03	RSS003-04-06	RSS003-04-09	RSS003-04-12	RSS003-04-15	RSS003-05-03	RSS003-05-06	RSS003-05-09	RSS003-05-12	RSS003-05-15	RSS004-01-03	RSS004-01-06	RSS004-01-09	RSS004-01-12	RSS004-01-15	RSS004-02-03	RSS004-02-06	RSS004-02-09	RSS004-02-12	RSS004-02-15	RSS004-03-03	RSS004-03-06	RSS004-03-09	RSS004-03-12	RSS004-03-15	RSS004-04-03	RSS004-04-06	RSS004-04-09	RSS004-04-12	RSS004-04-15

Notes			and a second						ti	Service and a state of the service o			All		
	N. an al		111							ALCONTANT -					
Lab #/Order # (Internal Use)							37772418 27979 AGO	R0+71710-01				2010			
ested	100						727924-				1				
Tests Requested Nitrate-N	X	X	X	×	×										
Matrix	Soil	Soil	Soil	Soil	Soil										
Time	141	1142	1143	1144	IHS										
Date	1-18-2020	11-18-2020	11-13-2020	11-18-2020	11-18-2020										
Sample #	RSS004-05-03	RSS004-05-06	RSS004-05-09	RSS004-05-12	RSS004-05-15										

REPORT NUMBER 20-330-0080 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS005**

SOIL ANALYSIS REPORT

											TRAL AMM	ONIUM AC	ETATE (EX	CHANG	EABLE)										
LAB	SAMPL		ORGA			PHOSPHO			POT	ASSIUM	MAG	NESIUM	CAL	CIUM		SODIUI	М	р		CATION EXCHANGE	PERCEN	F BASE SA	TURATIO	ON (C	OMPUTE	D)
NUMBER	IDENTIFICA	TION	MATT		P ₁ (WEAK BRAY)			OLSEN CARBONATE		К		Иg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%		% H	%
372			percent		1:7 ppm RAT	1:7		P ppm RATE		m RAT		RATE		RA		ppm	RATE	рН 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca			Na
	RSS005-0	1 02	percent	NAIL	ррпі клі	. ppm				m RAT	E ppm	NATE	ppm	n/A		ppin	NATE			meq/100g					_	
	RSS005-0																									
	RSS005-0																									
	RSS005-0																									
	RSS005-0																									
	RSS005-0																									
	RSS005-0																									
	RSS005-0																									
	RSS005-0																									
72494	RSS005-0	2-15																								
LAB				Ν	IITRATE-N	(FIA)							SULFUR			INC	MAN	GANESE	IRON	C	OPPER	BORON	N EX	KCESS LIME	SOLUBLE	
NUMBER	SUR	FACE			SUBSOIL	1		SUB	SOIL 2		Tota		S ICAP			Zn _{TPA}		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	R	RATE	SALTS	
372	ppm lbs		depth (in)	ppm	lbs/A	depth (in)	рр	om Ib:	s/A	depth (in)	lbs//	4		ATE	ppm					RATE pp			RATE	n	nmhos/ cm RA	те
72485	1	1 (0-3									1														
72486	1	1 :	3-6									1														
72487	1	1 6	6-9									1														
72488	2	2 9)-12									2														
72489	1	1 12	2-15									1														
72490	1		0-3									1														
72491	1		3-6									1														
72492	1		6-9									1														
72493	1)-12									1														
72494	1		2-15									1														

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0080 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS005**

SOIL ANALYSIS REPORT

										AL AMMON													
LAB	SAMPLE	ORGANIC		PHOSPI				POTASS	IUM	MAGNE		CALCIU	M	SODIU		р		CATION EXCHANGE	PERCEN	F BASE SAT		(COMPU	,
NUMBER	IDENTIFICATION	MATTER	P (WEAK BRA	(STRONG		OLSEN BICARBON	NATE	K		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	% Mg	% Ca	% H	% Na
372		percent RATE	1:7	1:	7	P		ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	рН 1:1	INDEX	C.E.C. meq/100g	r.	ivig	Ca		INd
	RSS005-03-03		. ppin k	AL PPIII	NAIL	ppm	NAIL	ppin	NATE	ppm	NAIL	ρριτι	NATE	ррш	NAIL			meq/100g					
	RSS005-03-06																						
	RSS005-03-06																						
	RSS005-03-12																						
	RSS005-03-15																						
	RSS005-04-03																						
	RSS005-04-06																						
	RSS005-04-09																						
	RSS005-04-12																						
72505	RSS005-04-15																						
LAB			NITRATE	N (FIA)							SI	JLFUR		ZINC	MAN	IGANESE	IRON	С	OPPER	BORON	LIM	JOLOD	
NUMBER	SURFACE		SUBSC	IL 1			SUBSO	IL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	PA	SALT: 1:1	
372	ppm lbs/A	depth (in) ppr	n Ibs/A	dept (in)		ppm	lbs/A		epth in)	lbs/A	рр	m RATE	pp	om RATE	е рр	m RATE	ppm	RATE pp	om RATE	ppm	RATE	mmhos/ cm	RATE
72495	1 1	0-3								1													
72496	1 1	3-6								1													
72497	1 1	6-9								1													
72498	1 1	9-12								1													
72499	1 1 1	2-15								1													
72500	1 1	0-3								1													
72502	1 1	3-6								1													
72503	1 1	6-9								1													
72504		9-12								1												1 1	
72505		2-15								1												1 1	

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days. Our reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization.

REPORT NUMBER **20-330-0080** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RSS005

SOIL ANALYSIS REPORT

					-						AL AMMONI	IUM ACE	TATE(EXCHA	NGEAB	BLE)									
LAB		AMPLE		ANIC		PHOSPHO	RUS		POTASSI	IUM	MAGNE	SIUM	CALCIU	М	SODIUI	N	pl		CATION EXCHANGE	PERCENT	BASE SAT	FURATION	(COMPUT	D)
NUMBER	IDENT	IFICATION		TTER .0. 1.	P ₁ (WEAK BRAY)		AY) BICARB	N ONATE	К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	%	%	%	%	% Na
372					1:7	1:7	F			DATE		DATE		DATE		DATE	рН 1:1	INDEX	C.E.C.	К	Mg	Ca	Н	ina
				nt RATE	ppm RATI	ppm R	ATE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
72506	RSSOC	05-05-03	3																					
72507	RSSOC	05-05-06	6																					
72508	RSS00	05-05-09)																					
72509	RSSOC)5-05-12	2																					
72510	RSSOC	05-05-15	5																					
LAB				1	NITRATE-N	(FIA)						SU	JLFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	
NUMBER		SURFACE			SUBSOIL	1		SUBSO	DIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RATE	SALTS	
372	ppm	lbs/A	depth (in)	ppm	lbs/A	depth (in)	ppm	lbs/A		epth in)	lbs/A	рр	m RATE	рр	om RATE	рр	m RATE	ppm	RATE pp	om RATE	ppm	RATE	mmhos/ cm R	ATE
72506	1	1	0-3								1													
72507	1	1	3-6								1													
72508	1	1	6-9								1													
72509	1	1	9-12								1													
72510	1	1	12-15								1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days. ur reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any referen

pg 6 of 21 Notes Lab #/Order # (Internal Use) Vadose Zone Sampling Program Chain-of-Custody Form Lower Platte South Natural Resources District 11/24/20 **Tests Requested** Date/Time: Lower Platte South NRD Lincoln, NE 68501-3581 Phone: (402) 476-2729 Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Nitrate-N × × × × × P.O. Box 83581 Report & Bill To: Dick Ehrman Matrix Soil Soil Soil Soil Soil OHSI ShSI Time PHZI 0208-11-11 11-17-2020 0292-LI-11 02×2-LJ-11 Date 85 m Relinquished By (Signature):. Relinquished By (Signature):. Relinquished By (Signature): Received By (Signature): Received By (Signature): Received By (Signature): RSS005-01-06 RSS005-01-09 RSS005-01-12 RSS005-01-03 Sample # Account #: 8722

37272485-3727260 × × × × × × × × × × Soil 1547 1600 6201 1025 2201 1020 1605 000 1603 16 by 1201 0202-11-11 0202-L1-11 0708-11-11 0202-L1-11 01/02-21-11 0202-1-1-11 0202-11-11 0708-11-11 0202-61-11 0702-11-11 0708-11-11 RSS005-03-15 RSS005-03-06 RSS005-03-09 RSS005-03-12 RSS005-01-15 RSS005-02-03 RSS005-02-06 RSS005-02-09 RSS005-02-12 RSS005-02-15 RSS005-03-03

Tests Requested	ne Matrix Nitr	11-17-2020 1644 Soil X	Soil	46 Soil	Soil	Soil	11-17-2020 1707 Soil X II-17-2020 1707	-	1709 Soil	1710 Soil		ISIN Soil	X 14 2	IST7 Soil X	Soil	532 Soil	Soil	1-19-2020 534 Soil X	11-18-2020 1535 Soil X	Soil	1554 Soil	SSTO Soil	0 1557 Soil	1558 Soil	1620 Soil	to loci Soil	
	RSS005-04-03			RSS005-04-09	RSS005-04-12 11-17-						RSS005-05-15		RSS008-01-06 11-18-		RSS008-01-15	RSS008-02-03											

der # Notes																27979485-37272560	01616-000					-								
Lab #/Order #	(Internal Use)													。		1	1													
Tests Requested	Nitrate-N	×	×	×	X	X	X	X	×	X	X	X	X	X	×	×	×	X	X	×	X	X	X	X	X	X	X	×	X	×
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Time	1 (048	1049	1050	1651	1053	040	6942	0943	0944	0446	1004	1005	1005	1006	1001	1032	1033	1034	1035	1036	1054	1055	0150	1057	1058	LIII	1119	1120	112.0
	Date	11-18-2020	11-18-2020	11-18-2020		1-18-2020	11-17-2020 (0202-11-11	1000	-			0202-11-11	11-17-2020	0202-11-11	0102-11-11	0202-11-11	0202-11-11	0202-11-11	0202-11-11	0202-11-11	11-17-2020	pro2-1)-11	11-17-2020	0707-11-11	0102-11-11	11-17-2020	0202-61-11	9292-61-11	11 13 2445
	Sample #	RSS008-05-03			RSS008-05-12			RSS009-01-06	RSS009-01-09	RSS009-01-12	RSS009-01-15 13 11	4.11.1	RSS009-02-06	RSS009-02-09	RSS009-02-12	RSS009-02-15	RSS009-03-03	RSS009-03-06	RSS009-03-09	RSS009-03-12	RSS009-03-15/14 TM	RSS009-04-03	RSS009-04-06	RSS009-04-09	RSS009-04-12	RSS009-04-15	RSS009-05-03	RSS009-05-06	RSS009-05-09	10 00000 0F 10

REPORT NUMBER 20-330-0081 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS008**

SOIL ANALYSIS REPORT

												AL AMMON	IUM ACE	TATE (EXCI	IANGEA	BLE)									
LAB		MPLE	ORG			PH	IOSPHO	RUS		POTAS	SIUM	MAGNE	SIUM	CALCI	UM	SODIL	JM	р		CATION EXCHANGE		T BASE SA	TURATIO	I (COMPUT	ED)
NUMBER	IDENTI	FICATION		TER D. I.	P ₁ (WEAK BR/		P ₂ (STRONG ² BR/		LSEN RBONATE	1	<	Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	%
372				t RATE	1:7		1:7 ppm R/		Р		RATE		RATE		RATE		RATE	pH 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca		Na
72511		0.01.00			ppm F	AIE	ррп к	ATE pp	m RATE	ppm	NATE	ppm	NATE	ppm	NATE	ppm	NATE			meq/100g					
72512																									
72513																									
72514																									
72515																									
72516																									
72517																									
72518																									
72519																									
72520	RSS00	8-02-15			_		_																		
LAB				Ν	NITRATE	-N (F	FIA)						S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	N EXCE	SOLUBL	.E
NUMBER		SURFACE			SUBS	DIL 1			SUBS	SOIL 2		Total		S		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RAT		
372	ppm	lbs/A	depth (in)	ppm	lbs/A		depth (in)	ppm	lbs		depth (in)	Ibs/A	pp	om RA1	Ер	pm RATE	E pr	om RATE			om RATE		RATE	mmhos/	ATE
72511	1	1	0-3									-													
72512	1	1	3-6									-													
72513		1	6-9									-													
72514		1	9-12									-													
72515		1	12-15									-													
72516		1	0-3									.													
72517	1	1	3-6									.													
72518	1	1	6-9									-												1.1	
72519		1	9-12									.	il												
72520		1	12-15									.	i I											1.1	

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0081 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS008**

SOIL ANALYSIS REPORT

		_								AL AMMONI	JM ACET	ATE (EXCHA	NGEAB	BLE)										
LAB	SAMPLE	ORGANI		PI	HOSPHOR	US		POTASS	SIUM	MAGNES	IUM	CALCIU	М	SODIU	М	pl	Н	CATION EXCHANGE	PERCEN	F BASE SA	TURATIO	ON (C	COMPUTE	D)
NUMBER	IDENTIFICATION	MATTEF		P, EAK BRAY)	P ₂ (STRONG ² BRAY) BICARB		к		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%		% H	%
372				1:7 pm RATE	1:7	F	RATE		RATE		RATE		RATE		RATE	рН 1:1	INDEX	C.E.C.	ĸ	Mg	Ca			Na
		percent R/	ie p	pm RATE	ррт ка	ie ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
	RSS008-03-03																							
	RSS008-03-06																							
	RSS008-03-09																							
	RSS008-03-12																							
	RSS008-03-15																							
	RSS008-04-03																							
	RSS008-04-06																							
	RSS008-04-09																							
	RSS008-04-12																							
72530	RSS008-04-15																							
LAB											-													
			NIT	RATE-N (FIA)						SU	lfur		ZINC	MAN	GANESE	IRON	C	OPPER	BORON	N EX	XCESS	SOLUBLE	
NUMBER	SURFACE			RATE-N (SUBSOIL 1	FIA)		SUBSC	DIL 2			-	S		Zn		Mn	Fe		Cu	В	L	XCESS LIME RATE	SALTS	
NUMBER		depth		SUBSOIL 1	depth			d	lepth	Total Ibs/A	-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372*	ppm lbs/A	(in) p				ppm	SUBSC Ibs/A	d	lepth (in)		-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	L	LIME RATE	SALTS	
NUMBER *372* 72521	ppm lbs/A	(in) p		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522	ppm Ibs/A 1 1 1 1	(in) p 0-3 3-6		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522 72523	ppm lbs/A 1 1 1 1 1 1 1 1 1	(in) p 0-3 3-6 6-9		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522 72523 72524	ppm lbs/A 1 1 1 1 1 1 1 1 1 1 1	(in) p 0-3 3-6 6-9 9-12		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522 72523 72524 72525	ppm lbs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(in) p 0-3 3-6 6-9 9-12 2-15		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522 72523 72524 72525 72526	ppm lbs/A	(in) F 0-3 3-6 6-9 9-12 2-15 0-3		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522 72523 72524 72525 72526 72526 72527	ppm lbs/A	(m) P 0-3 3-6 6-9 9-12 2-15 0-3 3-6		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522 72523 72524 72525 72526 72526 72527 72528	ppm lbs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(m) p 0-3		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	
NUMBER *372* 72521 72522 72523 72524 72525 72526 72526 72527	ppm lbs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(m) P 0-3 3-6 6-9 9-12 2-15 0-3 3-6		SUBSOIL 1	depth	ppm		d			-	S CAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D1	гра L R	LIME RATE	SALTS 1:1 nmhos/	

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0081** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RSS008

SOIL ANALYSIS REPORT

												AL AMMON	IUM ACE	TATE(EXCH)	ANGEAE										
LAB		AMPLE		GANIC		PI	IOSPHO			POTAS		MAGNE	SIUM	CALCIL	М	SODIU	M	pl		CATION EXCHANGE	PERCEN	F BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENT	IFICATION	N 1	TTER	OMEAK	P ₁ BRAY)	P ₂ (STRONG ² BR		SEN		K	Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
372						1:7	1:7		Р								0.175	pH 1:1	INDEX	C.E.C.	К	Mg	Ca	H	Na
				ent RATE	ppm	RATE	ppm R	(IE ppr	n RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
72531	RSSOC	8-05-03	3				- 1																		
72532	RSSOC	8-05-06	5				- 1																		
72533	RSSOC	8-05-09)				-																		
72534	RSSOC	8-05-12	2				-																		
72535	RSSOC	8-05-15	5																						
LAB					NITRA	ATE-N (FIA)						S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBI	
NUMBER		SURFACE			SL	UBSOIL 1			SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RATE	SALTS	5
372	ppm	lbs/A	depth (in)	ppm	1	lbs/A	depth (in)	ppm	lbs/	A	depth (in)	Ibs/A	pp		p	om RATE		om RATE			om RATE		RATE	mmhos/	RATE
72531	1	1	0-3									1													
72532	1	1	3-6									1													
72533	1	1	6-9									1			L										
72534	1	1	9-12	2								1													
72535	1	1	12-1	5								1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

pg 6 of 21 Notes Lab #/Order # (Internal Use) Vadose Zone Sampling Program Chain-of-Custody Form Lower Platte South Natural Resources District 11/24/20 **Tests Requested** Date/Time: Lower Platte South NRD Lincoln, NE 68501-3581 Phone: (402) 476-2729 Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Nitrate-N × × × × × P.O. Box 83581 Report & Bill To: Dick Ehrman Matrix Soil Soil Soil Soil Soil OHSI ShSI Time PHZI 0208-11-11 11-17-2020 0292-LI-11 02×2-LJ-11 Date 85 m Relinquished By (Signature):. Relinquished By (Signature):. Relinquished By (Signature): Received By (Signature): Received By (Signature): Received By (Signature): RSS005-01-06 RSS005-01-09 RSS005-01-12 RSS005-01-03 Sample # Account #: 8722

37272485-3727260 × × × × × × × × × × Soil 1547 1600 6201 1025 2201 1020 1605 000 1603 16 by 4201 0202-11-11 0202-L1-11 0708-11-11 0202-L1-11 01/02-21-11 0202-1-1-11 0202-11-11 0708-11-11 0202-61-11 0702-11-11 0708-11-11 RSS005-03-15 RSS005-03-06 RSS005-03-09 RSS005-03-12 RSS005-01-15 RSS005-02-03 RSS005-02-06 RSS005-02-09 RSS005-02-12 RSS005-02-15 RSS005-03-03

Tests Requested	ne Matrix Nitr	11-17-2020 1644 Soil X	Soil	46 Soil	Soil	Soil	11-17-2020 1707 Soil X II-17-2020 1707	-	1709 Soil	1710 Soil		ISIN Soil	X 14 2	IST7 Soil X	Soil	532 Soil	Soil	1-19-2020 534 Soil X	1-18-2020 1535 Soil X	Soil	1554 Soil	SSTO Soil	0 1557 Soil	1558 Soil	1620 Soil	to loci Soil	
	RSS005-04-03			RSS005-04-09	RSS005-04-12 11-17-						RSS005-05-15		RSS008-01-06 11-18-		RSS008-01-15	RSS008-02-03											

der # Notes					-											27979485-37272560	01616-100													
Lab #/Order #	(Internal Use)													。		1	1													
Tests Requested	Nitrate-N	X	X	×	×	×	×	×	×	X	X	X	X	X	×	×	X	X	×	×	×	X	X	X	X	×	×	×	×	×
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Time	1048	649	1050	1051	1053-	040	6942	0943	०१५५	0446	1004	1005	1005	1006	1001	1032	1033	1034	1035	1036	1054	1055	050	1057	1059	LIII	1119	1120	112.0
	Date	11-18-2020	1-18-2020	11-18-2020		1-18-2020	11-17-2020 (0202-11-11	1000	-			0202-11-11	0202-11-11	0202-11-11	0102-11-11	0202-11-11	0202-11-11	0202-11-11	0202-11-11	0202-11-11	11-17-2020	Rec -11-11	11-17.2020	0707-11-11	0102-11-11	11-17-2020	0202-21-11	9292-61-11	11 13 3445
	Sample #	RSS008-05-03			RSS008-05-12			RSS009-01-06	RSS009-01-09	RSS009-01-12	RSS009-01-15 13 14	4.11.1	RSS009-02-06	RSS009-02-09	RSS009-02-12	RSS009-02-15	RSS009-03-03	RSS009-03-06	RSS009-03-09	RSS009-03-12	RSS009-03-18/14 TM	RSS009-04-03	RSS009-04-06	RSS009-04-09	RSS009-04-12	RSS009-04-15	RSS009-05-03	RSS009-05-06	RSS009-05-09	DECODO OF 10

REPORT NUMBER 20-330-0082 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS009**

SOIL ANALYSIS REPORT

			_							NEUTR	AL AMMONI	UM ACE	TATE (EXCH	ANGEAE	BLE)									
LAB	SAMPL		ORGA			HOSPHO	RUS		POTASS	SIUM	MAGNE	SIUM	CALCI	JM	SODIU	М	р		CATION EXCHANGE	PERCENT	BASE SA	TURATION	(COMPUTI	ED)
NUMBER	IDENTIFICA	TION	MATT	ER	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BF		SEN	к		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	%
372					1:7	1:7		Р		DATE		DATE		DATE		DATE	рН 1:1	INDEX	C.E.C.	ĸ	Mg	Ca	п	Na
	DOO 000000	4.00	percent	RATE	ppm RATE	ppm r	RATE ppr	n KATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
	RSS009-0																							
	RSS009-0																							
	RSS009-0																							
	RSS009-0																							
	RSS009-0																							
	RSS009-0																							
	RSS009-0																							
	RSS009-0																							
	RSS009-0																							
72546	RSS009-0	2-15																						
LAB				N	IITRATE-N	(FIA)						S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	E
NUMBER	SUR	FACE			SUBSOIL			SUBS	OIL 2			-	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RATE	SALTS	
372			depth			depth			d	lepth	Total Ibs/A		ICAP		DIPA		DIPA	DIPA		DIPA	SORB. DI	PA	mmhos/	
	ppm lbs		(in)	ppm	lbs/A	(in)	ppm	lbs/	A	(in)			om RATI	E pp	om RATE	pp	m RATE	ppm	RATE pp	m RATE	ppm	RATE	cm R	ATE
72536	3		0-3								3	5												
72537	1		3-6								1													
72538	2		6-9								2	2												
72539	4		9-12								4	-												
72541	4		2-13								1													
72542	2	2	0-3								2	2												
72543	1	1	3-6								1													
72544	1	1	6-9								1													
72545	2	2 9	9-12								2	2												
72546	3	3 1	2-15								3													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0082 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **RSS009**

SOIL ANALYSIS REPORT

											NEUTR	AL AMMON	UM ACE	TATE (EXCI	HANGEA	BLE)									
LAB		MPLE		ANIC		PHOSP	HORU	1	PC	DTASSI	UM	MAGNE	SIUM	CALC	UM	SODI	UM	р	I	CATION EXCHANGE	PERCEN	F BASE SA	FURATION	(COMPUT	ED)
NUMBER	IDENTIF	ICATION		TTER .0. 1.	P ₁ (WEAK BRAY	(STRON		OLSEN BICARBONA	TF	К		Mg		Ca		Na	а	SOIL	BUFFER	CAPACITY	%	%	%	% H	%
372					1:7	1	:7	Р			DATE		DATE		DATE		DATE	pH 1:1	INDEX	C.E.C.	к	Mg	Ca	Н	Na
				nt RATE	ppm RA	IE ppm	RATE	ppm RA	IE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
72547																									
72548																									
72549																									
72550																									
72551																									
72552																									
72553																									
72554	RSS00	9-04-09																							
72555	RSS00	9-04-12																							
72556	RSS00	9-04-15																							
LAB				1	VITRATE-	J (FIA)							S	ULFUR		ZINC	MA	NGANESE	IRON		OPPER	BORON	EXCESS	SOLUBL	.E
NUMBER		SURFACE			SUBSO			SL	BSOIL	2			-	S		Zn		Mn	Fe		Cu	В	LIME	SALTS	
070			depth			dep	th			der	oth	Total Ibs/A		ICAP		DTPA		DTPA	DTPA		DTPA	SORB. DI	РА	1:1 mmhos/	
372	ppm	lbs/A	(in)	ppm	lbs/A	(in		ppm	lbs/A		n)			m RA	'E p	pm RA ⁻	TE pj	pm RATE	ppm	RATE p	om RATE	ppm	RATE	cm R	ATE
72547	3	3	0-3									(r)	8												
72548		1	3-6									1													
72549	3	3	6-9									3													
72550	3	3	9-12									3													
72551	3	2	12-14	ŀ								2													
72552	3	3	0-3									3	3												
72553	1	1	3-6									1	1												
72554	2	2	6-9									2	2												
72555	6		9-12									5	5												
72556	7		12-15									6													

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0082** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM RSS009

SOIL ANALYSIS REPORT

														RAL AMMO	NIUM AC	CETATE (E)	CHANG	GEABLE												
LAB		MPLE		RGAN			Pł	HOSPH	ORU:	Ş		POTAS	SIUM	MAGN	ESIUM	CAL	CIUM.		SODIU	М	pl		CATION EXCHANGE	PERCE	NT B	BASE SAT	URATIO	ON (COMPUT	ED)
NUMBER	IDENTI	FICATION	A V	L.O. I.		P1 (WEAK E				OLSE	N ONATE	ŀ	(M	g		Ca		Na		SOIL	BUFFER	CAPACITY	%		%	%		%	%
372						1:7		1:7		P			DATE		RATE					RATE	рН 1:1	INDEX	C.E.C.	К		Mg	Ca		Н	Na
72557				ercent	RATE	ppm	RATE	ppm	KATE	ppm	RATE	ppm	RATE	ppm	KATE	E ppn	1 K/	ATE	ppm	RATE			meq/100g							
/200/	85500	9-05-03	5	_																										
72558	RSSOO	9-05-06	6																											
72559	RSS00	9-05-09	9														1													
72560	RSS00	9-05-12	2																											
LAB					N	ITRAT	E-N (FIA)								SULFUR		ZI	INC	MAN	IGANESE	IRON		OPPER		BORON	Đ	XCESS LIME	SOLUBL	E
NUMBER		SURFACE					SOIL 1				SUBS	OIL 2				S ICAP			Zn _{TPA}		Mn dtpa	Fe dtpa		Cu dtpa		B SORB. DTP	F	RATE	SALTS	
372	ppm	lbs/A	deptl (in)		ppm	lbs	/A	depth (in)		ppm	lbs//	A .	depth (in)	Total Ibs/A	_		RATE	ppm						pm RAT			RATE	I	mmhos/	ATE
72557	3	3	0-3	3											3														- 1	
72558	1	1	3-6	5											1															
72559	1	1	6-9	9											1					L									-	
72560	2	2	9-1	2											2															

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days. Our reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. pg 6 of 21 Notes Lab #/Order # (Internal Use) Vadose Zone Sampling Program Chain-of-Custody Form Lower Platte South Natural Resources District 11/24/20 **Tests Requested** Date/Time: Lower Platte South NRD Lincoln, NE 68501-3581 Phone: (402) 476-2729 Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Nitrate-N × × × × × P.O. Box 83581 Report & Bill To: Dick Ehrman Matrix Soil Soil Soil Soil Soil OHSI ShSI Time PHZI 0208-11-11 11-17-2020 0292-LI-11 02×2-LJ-11 Date 85 m Relinquished By (Signature):. Relinquished By (Signature):. Relinquished By (Signature): Received By (Signature): Received By (Signature): Received By (Signature): RSS005-01-06 RSS005-01-09 RSS005-01-12 RSS005-01-03 Sample # Account #: 8722

37272485-3727260 × × × × × × × × × × Soil 1547 1600 6201 1025 2201 1020 1605 000 1603 16 by 1201 0202-11-11 0202-L1-11 0708-11-11 0202-L1-11 01/02-21-11 0202-1-1-11 0202-11-11 0708-11-11 0202-61-11 0702-11-11 0708-11-11 RSS005-03-15 RSS005-03-06 RSS005-03-09 RSS005-03-12 RSS005-01-15 RSS005-02-03 RSS005-02-06 RSS005-02-09 RSS005-02-12 RSS005-02-15 RSS005-03-03

Tests Requested	ne Matrix Nitr	11-17-2020 1644 Soil X	1645 Soil	46 Soil	Soil	Soil	11-17-2020 1707 Soil X II-17-2020 1707	-	1709 Soil	1710 Soil	0 /7// Soil X Eale	ISIN Soil	X 14 2	IST7 Soil X	Soil	532 Soil	Soil	1-18-2020 1535 Soil X	Soil	1554 Soil	SSTO Soil	0 1557 Soil	1558 Soil	1620 Soil	to loci Soil	_	
	RSS005-04-03										RSS005-05-15 //-		RSS008-01-06 11-18-		RSS008-01-15	RSS008-02-03											RSS008-04-12 - &- 2020

der # Notes					-											27979485-37272560	01616-100													
Lab #/Order #	(Internal Use)													。		1	1													
Tests Requested	Nitrate-N	X	X	×	×	×	×	×	×	X	X	X	X	X	×	×	X	X	×	×	×	X	X	X	X	×	×	×	×	×
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Time	1048	649	1050	1051	1629-	040	6942	0943	0944	0446	1004	1005	1005	1006	1001	1032	1033	1034	1035	1036	1054	1055	050	1057	1059	LIII	1119	1120	112.0
	Date	11-18-2020	1-18-2020	11-18-2020		1-18-2020	11-17-2020 (0202-11-11	1000	-			0202-11-11	0202-11-11	0202-11-11	0102-11-11	0202-11-11	0202-11-11	0202-11-11	0202-11-11	0202-11-11	11-17-2020	Rec -11-11	11-17.2020	0707-11-11	0102-11-11	11-17-2020	0202-21-11	9292-61-11	11 13 3445
	Sample #	RSS008-05-03			RSS008-05-12			RSS009-01-06	RSS009-01-09	RSS009-01-12	RSS009-01-15 13 14	4.11.1	RSS009-02-06	RSS009-02-09	RSS009-02-12	RSS009-02-15	RSS009-03-03	RSS009-03-06	RSS009-03-09	RSS009-03-12	RSS009-03-18/14 TM	RSS009-04-03	RSS009-04-06	RSS009-04-09	RSS009-04-12	RSS009-04-15	RSS009-05-03	RSS009-05-06	RSS009-05-09	DECODO OF 10

Work Order: 1566879

23 December 2020

CHRIS WITTHUHN LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 RE: Nitrate Only/Irrigation Wells

Enclosed are the results of analyses for samples received by the laboratory on 2020-12-16 11:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Seather Ramig

Heather Ramig Project Manager hramig@midwestlabs.com

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
RGW001	1566879-01	Aqueous	2020-12-10 12:15	2020-12-16 11:00
RGW002	1566879-02	Aqueous	2020-12-12 15:38	2020-12-16 11:00
RGW003	1566879-03	Aqueous	2020-12-11 1 :	2020-12-16 11:00
RGW005	1566879-0	Aqueous	2020-12-12 09: 7	2020-12-16 11:00
RGW006	1566879-05	Aqueous	2020-12-11 11:13	2020-12-16 11:00
RGW007	1566879-06	Aqueous	2020-12-11 16:11	2020-12-16 11:00
RGW008	1566879-07	Aqueous	2020-12-12 11:5	2020-12-16 11:00
RGW009B	1566879-08	Aqueous	2020-12-10 08:59	2020-12-16 11:00

Redacted text

The result(s) issued on this report only reflect the analysis of the sample(s) submitted. For applicable test parameters, Midwest Laboratories is in compliance with NELAC requirements. Our reports and letters are for the e clusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization.

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
PO BOX 83581		Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	2020-12-23 16:41

Containers used for the following analyses:

	1566879-01 A:	EPA 353.2
	1566879-02 A:	EPA 353.2
	1566879-03 A:	EPA 353.2
	1566879-04 A:	EPA 353.2
	1566879-05 A:	EPA 353.2
	1566879-06 A:	EPA 353.2
#	1566879-07 A:	EPA 353.2
	1566879-08 A:	EPA 353.2
	1566879-09 A:	EPA 353.2
	1566879-10 A:	EPA 353.2
	1566879-11 A:	EPA 353.2
	1566879-12 A:	EPA 353.2
	1566879-13 A:	EPA 353.2
	1566879-14 A:	EPA 353.2
	1566879-15 A:	EPA 353.2
	1566879-16 A:	EPA 353.2
	1566879-17 A:	EPA 353.2
	1566879-18 A:	EPA 353.2
	1566879-19 A:	EPA 353.2
	1566879-20 A:	EPA 353.2
	1566879-21 A:	EPA 353.2
	1566879-22 A:	EPA 353.2

Note: Indicates container was received outside the acceptable pH range and was preserved at the laboratory.

Analysis Results Reviewed by:

EPA 353.2 reviewed by jdb5.

 BOX 83581 COLN. NE 68501-3581	Project Manager: CHDIS WITTHINN	Reported: 2020-12-23 16:41
GOLIN, INE 00001-0001	Project Manager: CHRIS WITTHUHN	2020-12-23 10.41

Sample ID: RGW001 Laboratory ID: 1566879-01 Sampled Date/Time: 2020-12-10 12:15

		Reporting					((Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	4.58	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581	Project: Nitrate Only/Irrigation Wells	Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN Sample ID: RGW002	2020-12-23 16:41

Laboratory ID: 1566879-02 Sampled Date/Time: 2020-12-12 15:38

Reporting							(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes	
Environmental Chemistry									
Nitrate/Nitrite Nitrogen	0.99	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)	

LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN Sample ID: RGW003	2020-12-23 16:41
PO BOX 83581		Reported:
LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	

Laboratory ID: 1566879-03 Sampled Date/Time: 2020-12-11 14:44

Reporting							(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes	
Environmental Chemistry									
Nitrate/Nitrite Nitrogen	25.6	0.40	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)	

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
PO BOX 83581		Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	2020-12-23 16:41
	Sample ID: RGW005	

Laboratory ID: 1566879-04 Sampled Date/Time: 2020-12-12 09:47

Reporting							(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes	
Environmental Chemistry									
Nitrate/Nitrite Nitrogen	<	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)	

	LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
	PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
l		Sample ID: RGW006	

Laboratory ID: 1566879-05 Sampled Date/Time: 2020-12-11 11:13

Reporting							(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes	
Environmental Chemistry									
Nitrate/Nitrite Nitrogen	1.19	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)	

	LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
	PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
1		Sample ID: RGW007	

Laboratory ID: 1566879-06 Sampled Date/Time: 2020-12-11 16:11

Reporting							(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes	
Environmental Chemistry									
Nitrate/Nitrite Nitrogen	0.29	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)	

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581	Project: Nitrate Only/Irrigation Wells	Penerted
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
	Sample ID: RGW008	

Laboratory ID: 1566879-07 Sampled Date/Time: 2020-12-12 11:54

Reporting							(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes	
Environmental Chemistry									
Nitrate/Nitrite Nitrogen	2.97	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)	

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
PO BOX 83581		Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	2020-12-23 16:41
	Sample ID: RGW009B	

Laboratory ID: 1566879-08 Sampled Date/Time: 2020-12-10 08:59

Reporting									
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes	
Environmental Chemistry									
Nitrate/Nitrite Nitrogen	12.3	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)	

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

Redacted text

Page 14 of 31

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported: 2020-12-23 16:41

Environmental Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B008658										
Blank (B008658-BLK1)				Prepared &	Analyzed:	2020-12-22				
Nitrate/Nitrite Nitrogen	<	0.20	mg/L							
LCS (B008658-BS1)				Prepared &	Analyzed:	2020-12-22				
Nitrate/Nitrite Nitrogen	5.35	0.20	mg/L	5.00		107	90-110			
Matrix Spike (B008658-MS1)	Source: 1566879-06 P		Prepared 8	Analyzed:	2020-12-22					
Nitrate/Nitrite Nitrogen	4.57	0.20	mg/L	4.00	0.29	107	90-110			
Matrix Spike (B008658-MS2)	Sou	Source: 1566879-12 F			Prepared & Analyzed: 2020-12-22					
Nitrate/Nitrite Nitrogen	4.60	0.20	mg/L	4.00	0.24	109	90-110			
Matrix Spike Dup (B008658-MSD1)	Sou	rce: 1566879-0	06	Prepared & Analyzed: 2020-12-22						
Nitrate/Nitrite Nitrogen	4.58	0.20	mg/L	4.00	0.29	107	90-110	0.175	10	
Matrix Spike Dup (B008658-MSD2)	Sou	rce: 1566879- [,]	12	Prepared & Analyzed: 2020-12-22						
Nitrate/Nitrite Nitrogen	4.53	0.20	mg/L	4.00	0.24	107	90-110	1.58	10	
Batch B008683										
Blank (B008683-BLK1)				Prepared 8	Analyzed:	2020-12-23				
Nitrate/Nitrite Nitrogen	<	0.20	mg/L							
LCS (B008683-BS1)				Prepared 8	Analyzed:	2020-12-23				
Nitrate/Nitrite Nitrogen	5.14	0.20	mg/L	5.00		103	90-110			
Matrix Spike (B008683-MS1)	Sou	rce: 1566879-2	21	Prepared & Analyzed: 2020-12-23						
Nitrate/Nitrite Nitrogen	12.33	0.20	mg/L	4.00	8.63	92.5	90-110			

LOWER PLATTE SOUTH NRD - 8722	F
PO BOX 83581	
LINCOLN, NE 68501-3581	Project Ma

Project: Nitrate Only/Irrigation Wells

oject Manager: CHRIS WITTHUHN

Reported: 2020-12-23 16:41

Environmental Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B008683										
Matrix Spike (B008683-MS2)	Source: 1566879-22 Pr		Prepared 8	Prepared & Analyzed: 2020-12-23						
Nitrate/Nitrite Nitrogen	4.61	0.20	mg/L	4.00	0.52	102	90-110			
Matrix Spike (B008683-MS3)	Sourc	Source: 1564954-01 Pr		Prepared 8	Prepared & Analyzed: 2020-12-23					
Nitrate/Nitrite Nitrogen	6.82	0.20	mg/L	4.00	2.89	98.1	90-110			
Matrix Spike Dup (B008683-MSD1)	Sourc	e: 1566879-2	:1	Prepared & Analyzed: 2020-12-23			i			
Nitrate/Nitrite Nitrogen	12.28	0.20	mg/L	4.00	8.63	91.1	90-110	0.463	10	
Matrix Spike Dup (B008683-MSD2)	Sourc	e: 1566879-2	2	Prepared 8	Analyzed:	2020-12-23	i			
Nitrate/Nitrite Nitrogen	4.61	0.20	mg/L	4.00	0.52	102	90-110	0.130	10	
Matrix Spike Dup (B008683-MSD3)	Sourc	e: 1564954-0	1	Prepared & Analyzed: 2020-12-23			i i			
Nitrate/Nitrite Nitrogen	6.89	0.20	mg/L	4.00	2.89	100	90-110	1.07	10	

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/I	Irrigation Wells	
PO BOX 83581			Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITT	HUHN	2020-12-23 16:41
Certified Analyses included in this Repo	ort		
Method	Analyte	Certifications	

Aqueous Nitrate/Nitrite N	itrogen	TX,FL,UT,OK,IA		
Description	Number	Expires		
Florida Department of Health	E87918	06/30/2021		
lowa Department of Natural Resources	064	05/01/2021		
Kansas Department of Health and Environment	E-10402	04/30/2021		
State of Nebraska Dept of Health & Human Services	NE-04-05	06/30/2021		
Oklahoma Department of Environmental Quality	2019-094	08/31/2021		
Texas Commission on Environmental Quality	T104704416-20-14	07/31/2021		
State of Utah Department of Health	NE000012020-10	07/31/2021		
State of Washington Department of Ecology	C912	06/07/2020		
	Description Florida Department of Health Iowa Department of Natural Resources Kansas Department of Health and Environment State of Nebraska Dept of Health & Human Services Oklahoma Department of Environmental Quality Texas Commission on Environmental Quality State of Utah Department of Health	DescriptionNumberFlorida Department of HealthE87918Iowa Department of Natural Resources064Kansas Department of Health and EnvironmentE-10402State of Nebraska Dept of Health & Human ServicesNE-04-05Oklahoma Department of Environmental Quality2019-094Texas Commission on Environmental QualityT104704416-20-14State of Utah Department of HealthNE000012020-10		

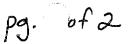
LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported: 2020-12-23 16:41

Notes and Definitions

< Less than reporting limit


NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

EPA 524.2, EPA 624, EPA 8260, OA-1, TCLP VOC, GRO, and all microbiological analyses are conducted in the facility located at 13606 B Street, Omaha, NE 68144. All other analyses are conducted in the main facility located at 13611 B Street, Omaha, NE 68144.

W6777566079 · /

Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form

Report & Bill To: Dick Ehrman

Account #: 8722

	1.0.
1	Linco
\sim	/ Phor
Relinquished By (Signature):	
Received By (Signature): Sydney S.	Corcose
Relinquished By (Signature): SMAMM S. Received By (Signature):	Corcer 20
Relinquished By (Signature)	4

Received By (Signature):

Lower Platte South NRD P.O. Box 83581 Lincoln, NE 68501-3581 Phone: (402) 476-2729 回読回 156687 した。その 日本-5 Sticker #: 1

Date/Time: 12/15/2020 10:10Am Date/Time: 13/15/2020 10:10AM

Date/Time: 17/15/20 1030AM Date/Time: 12/15/20 1030Am

Date/Time:<u>/J/16/20 10:</u>50 am Date/Time:

				Tests Requ	uested	Lab #/	Order #	
Sample #	Date	Time	Matrix	Nitrate-N		(Internal Use)		Notes
, RGW001	12-10-2020	1215	Groundwater	X				
RGW002	12-12-2020	1538	Groundwater	Х				
RGW003	12-11-2020	1444	Groundwater	X				
			Groundwater	— X				
RGW005	12-12-2020	0947	Groundwater	ja 54 (. X asta a)				
RGW006	12-11-2020	_1113	Groundwater	X				
RGW007	12-11-2020	1611	Groundwater	X				
RGW008	12-12-2020	154	Groundwater	Х				
RGW009 B	12-10-2020	0859	Groundwater	X				
RGW010			Groundwater	X				
AGW011	12-7-2020	056	Groundwater	X				
AGW012	12-13-2020	0942	Groundwater	Х				
AGW013	12-9-2020	1131	Groundwater	X (
AGW014	12-7-2020	1506	Groundwater	X				
AGW015	12-9-2020	003	Groundwater	X				

1 (DD Page 30 of 31 2.0°Att 12/10/19

LPSNRD Vadose Zone Sampling Program Chain-of Custody

p. <u>2</u> of <u>2</u>

	7	<u> </u>	T	ļ		_		
AGW016	12-8-2020	1139	Groundwater	X.			<u> </u>	
AGW017 A	12-7-2020	1614	Groundwater	X	<u> </u>		_	
AGW018	12-8-2020	1356	Groundwater					
AGW019	12-8-2020	1006	Groundwater					
AGW020	12-8-2020	_1702_	Groundwater	X			<u> </u>	
AGW021	12-7-2020	1339		X	-			
AGWOITB	2-8-2020		Groundwater	<u> </u>				
GWDUP-1	12-9-2020	1606	Grandwiter	$\underline{\Lambda}$				
GW DUP-2	10-1-2020	0902	Grandwater	<u> </u>	<u> </u>			
	12-9-2020	1449	Grandwinter	X			$G(x_i) \in G(x_i)^{-1}$	
				<u> </u>	<u> </u>			
a da se trans a se de la contre de la contre		<u> </u>	HOOKGENPE					
			1566	1879	Falk C			
		— <u>Ci</u>	ົ້າດັ່ງ 🖫			빌		
	<u>la da persette da p</u>		Sticker	#· 2			i in migilipherer a	ana any amin'ny soratra dia mampina dia
				1 • £	L=1 4 ; ; ;	R —		
					_	<u>Jean</u>		na an a
								<u>a na ani ang akatri na Kangaran Proposi</u> gai. Ta
					2013			
						<u> </u>		<u>. 41 - 2018년 1월 1943년 1947년</u> - 23일
				<u> </u>		<u></u>		
			all states			n in	un forfan de la c	
						<u>A (Art) (Art)</u>	<u>1898 (617) (65</u>)	
						<u></u>		
			·			<u>ang (1876-0)</u>		
								· · · · · · · · · · · · · · · · · · ·
			<u> </u>			<u>neta estada</u>		
			an a					
			<u>na Alinta (na ang</u> a		lateral al terral a constante de la			

Page 31 of 31

This page intentionally left blank

Appendix D

Shallow Soil Sampling Results Tables

This page intentionally left blank

			Site RSS001				
Sample Location #	1	2	3	4	5	Avg N	Avg. N
Land use	Dryland Soybeans	Avg. N	Avg. N				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft
0-3 ft	11	14	14	7	18	13	39
3-6 ft	4	4	4	4	7	4	13
6-9 ft	4	4	7	4	7	5	15
9-12 ft	11	4	7	7	7	7	22
12-15 ft	14	7	11	7	7	9	28
Root Zone Avg.							
(0-3, 3-6 ft)	7	9	9	5	13	9	156
Below Root Zone Avg.							
(6-9, 9-12, 12-15 ft)	10	5	8	6	7	7	195
Avg. N for all depths	9	6	9	6	9	8	-
Avg. N lb/ac	130	97	130	87	141	-	117

			Site RSS003				
Sample Location #	1	2	3	4	5	Avg. N	Avg. N
Land use	Range Pasture Grass	Avg. IN	Avg. N				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft
0-3 ft	4	4	4	4	4	4	11
3-6 ft	4	4	4	4	4	4	11
6-9 ft	4	4	4	4	4	4	11
9-12 ft	4	4	4	7	4	4	13
12-15 ft	4	4	7	4	4	4	13
Root Zone Avg.							
(0-3, 3-6 ft)	4	4	4	4	4	4	65
Below Root Zone Avg.							
(6-9, 9-12, 12-15 ft)	4	4	5	5	4	4	110
Avg. N for all depths	4	4	4	4	4	4	-
Avg. N lb/ac	54	54	65	65	54	-	58

	Site RSS004										
Sample Location #	1	2	3	4	5	Avg. N	Avg. N				
Land use	Range Pasture Grass										
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft				
0-3 ft	4	4	4	4	4	4	11				
3-6 ft	4	4	4	4	4	4	11				
6-9 ft	4	4	4	4	4	4	11				
9-12 ft	4	4	4	4	4	4	11				
12-15 ft	4	4	4	4	4	4	11				
Root Zone Avg. (0-3, 3-6 ft)	4	4	4	4	4	4	65				
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	4	4	4	4	4	4	97				
Avg. N for all depths	4	4	4	4	4	4	-				
Avg. N lb/ac	54	54	54	54	54	-	54				

Site RSS005										
Sample Location #	1	2	3	4	5	Aug N	Avg. N			
Land use	Range Pasture Grass	Avg. N								
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft			
0-3 ft	4	4	4	4	4	4	11			
3-6 ft	4	4	4	4	4	4	11			
6-9 ft	4	4	4	4	4	4	11			
9-12 ft	7	4	4	4	4	4	13			
12-15 ft	4 4		4	4	4	4	11			
Root Zone Avg.										
(0-3, 3-6 ft)	4	4	4	4	4	4	65			
Below Root Zone Avg.										
(6-9, 9-12, 12-15 ft)	5	4	4	4	4	4	104			
Avg. N for all depths	4	4	4	4	4	4	-			
Avg. N lb/ac	65	54	54	54	54	-	56			

Site RSS008										
Sample Location #	1	2	3	4	5	Avg. N	Avg. N			
Land use	Woodland	Woodland	Woodland	Woodland	Woodland					
Units	lb/ac-ft									
0-3 ft	4	4	4	4	4	4	11			
3-6 ft	4	4	4	4	4	4	11			
6-9 ft	4	4	4	4	4	4	11			
9-12 ft	4	4	4	4	4	4	11			
12-15 ft	4	4	4	4	4	4	11			
Root Zone Avg. (0-3, 3-6 ft)	4	4	4	4	4	4	65			
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	4	4	4	4	4	4	97			
Avg. N for all depths	4	4	4	4	4	4	-			
Avg. N lb/ac	54	54	54	54	54	-	54			

Site RSS009										
Sample Location #	1	2	3	4	5	Avg. N	Avg. N			
Land use	Dryland Soybeans									
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft			
0-3 ft	11	7	11	11	11	10	30			
3-6 ft	4	4	4	4	4	4	11			
6-9 ft	7	4	11	7	7 4		19			
9-12 ft	14	7	11	22	7	12	37			
12-15 ft	14	11	11	25		15	46			
Root Zone Avg.										
(0-3, 3-6 ft)	7	5	7	7	7	7	123			
Below Root Zone Avg.										
(6-9, 9-12, 12-15 ft)	12	7	11	18	5	11	307			
Avg. N for all depths	10	6	9	14	6	9	-			
Avg. N lb/ac	152	97	141	206	76	-	134			

This page intentionally left blank

Appendix E

Deep Soil Sampling Results Tables

This page intentionally left blank

	RDS001	RDS002	RDS003	RDS004A	RDS0004B	RDS005	RDS006	RDS007	RDS008	RDS009A	RDS009B	RDS010
Interval (ft)	Soybeans	Grassland	Grassland	Pasture	Pasture	Grassland	Soybeans	Corn	Woodland	Soybeans	Soybeans	Grassland
0-5	18	4	4	4	4	4	14	25	4	11	87	36
5-10	7	4	4	4	4	4	11	18	4	7	14	14
10-15	7	4	4	4	4	4	11	32	4	18	18	7
15-20	11	4	4	4	4	4	18	22	4	14	14	18
20-25	7	4	4	11	4	4	14	25	4	7	14	166
25-30	4	4	7	7	7	4	14	18	4	4	-	213
30-35	4	4	11	4	4	7	11	4	4	4	-	152
35-40	-	4	14	4	-	-	7	4	-	4	-	152
40-45	-	-	18	4	-	-	4	-	-	4	-	69
45-50	-	-	-	4	-	-	11	-	-	-	-	25
50-55	-	-	-	-	-	-	4	-	-	-	-	22
55-60	-	-	-	-	-	-	-	-	-	-	-	40
60-65	-	-	-	-	-	-	-	-	-	-	-	25
Average	8	4	8	5	4	4	11	18	4	8	30	72
Minimum	4	4	4	4	4	4	4	4	4	4	14	7
Maximum	18	4	18	11	7	7	18	32	4	18	87	213
Total Lb/Ac	289	144	343	225	144	144	595	740	126	361	740	4618
Quartile 2	5	4	4	4	4	4	9	14	4	4	14	21
Quartile 3	9	4	11	4	4	4	14	25	4	11	18	152

This page intentionally left blank