

LOWER PLATTE SOUTH natural resources district

Phase II Nitrate Verification Study For Ashland Community Water System Protection Area

Ashland, Nebraska

Prepared for

Lower Platte South Natural Resources District PO Box 83581 3125 Portia Street Lincoln, Nebraska 68521

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 221 Sun Valley Blvd., Suite D Lincoln, Nebraska 68528 (402) 476-3766

> March 2022 Version: DRAFT EA Project No. 6333202

Phase II Nitrate Verification Study For Ashland Community Water System Protection Area

Ashland, Nebraska

Prepared for

Lower Platte South Natural Resources District PO Box 83581 3125 Portia Street Lincoln, Nebraska 68521

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 221 Sun Valley Blvd., Suite D Lincoln, Nebraska 68528 (402) 476-3766

Dale Schlautman Vice President Date

March 2022 Version: DRAFT EA Project No. 6333202

CONTENTS

Page

LIST C)F FIGU	URES	iii
		BLES	
LIST C	OF ACR	RONYMS AND ABBREVIATIONS	v
EXEC	UTIVE	SUMMARY	1
1.	INTRO	DDUCTION	1-1
	1.1	LPSNRD GROUNDWATER MANAGEMENT	1-1
	1.2	ASHLAND STUDY AREA	1-2
	1.3	PURPOSE OF STUDY	1-2
2.	BACK	GROUND INFORMATION	2-1
	2.1	KEY TERMS	2-1
	2.2	NITRATE-NITROGEN (NO ₃ -N)	2-3
		2.2.1 Background Levels and Leaching	2-3
		2.2.2 Point and Non-Point Sources	
3.	PHYSI	ICAL SETTING	3-1
	3.1	LAND USE	3-1
	3.2	REGIONAL HYDROGEOLOGY	3-5
	3.3	SITE HYDROGEOLOGY	3-5
	3.4	SURFACE DRAINAGE	3-5
	3.5	POINT SOURCE INVESTIGATION	3-5
	3.6	REGISTERED WELLS	3-6
		3.6.1 Public Water Supply Wells	3-11
	3.7	WELLHEAD ANALYTICAL ELEMENT MODEL REVIEW	
4.	METH	ODS OF INVESTIGATION	4-1
	4.1	SHALLOW SAMPLING	4-1
	4.2	DIRECT PUSH SAMPLING	4-1
		4.2.1 Deep Sampling	4-2
		4.2.2 Groundwater Sampling	
	4.3	MONITORING WELLS	
		4.3.1 Monitoring Well Drilling	
		4.3.2 Monitoring Well Construction and Development	
		4.3.3 Monitoring Well Groundwater Sampling	
	4.4	SAMPLE IDENTIFICATION	
	4.5	QA/QC PROCEDURES	
	4.6	UTILITY CLEARANCES	
	4.7	SURVEY	
		4.7.1 Monitoring Well.	
		4.7.2 Deep Vadose Zone Sampling and Shallow Vadose Zone Sampling	
		Locations	4-5
		4.7.3 Irrigation and Domestic Wells	
5.	RESU		
	5.1	GEOLOGIC PROFILE	

5.2	GROU	UNDWATER LEVELS			
	5.2.1	Groundwater Levels During Field Investigation			
	5.2.2	Groundwater Flow Direction			
5.3	NITR	ATE LOADING			
	5.3.1	Shallow Soil Samples			
	5.3.2	Deep Soil Samples			
	5.3.3	Direct Push Groundwater Samples			
	5.3.4	Evaluation			
5.4	QA/Q	C SAMPLES			
5.5	GROU	UNDWATER MONITORING WELL RESULTS			
	5.5.1	Monitoring Well Groundwater Samples			
5.6	NITR	ATE-N AND LAND USE			
	5.6.1	Dryland Corn/Soybeans and Irrigated Corn			
	5.6.2	Range, Pasture, and Grass			
	5.6.3	Nitrate Variability			
	5.6.4	Average Nitrate by Land Use			
CO		DNS			
6.1	LEAC	CHABLE NITRATE-N IN SOIL	6-1		
	6.1.1	Shallow Soil Samples			
	6.1.2	1 1			
6.2	NITR	ATE-N IN GROUNDWATER			
6.3	NITR	ATE LOADING BY LAND USE			
6.4	SOUF	RCES OF NITRATE-N			
6.5	FUTU	JRE LEACHING POTENTIAL			
REI	FERENCE	ES			

- APPENDIX A: WhAEM Model Review and Data Sheets
- APPENDIX B: Monitoring Well Construction Forms and Boring Logs
- APPENDIX C: Laboratory Results

6.

7.

- APPENDIX D: Shallow Soil Sampling Results Tables
- APPENDIX E: Deep Soil Sampling Results Tables

LIST OF FIGURES

<u>Number</u>	<u>Title</u> Page
Figure 1.	Site Location Map1-5
Figure 2.	Vadose Zone Illustration2-1
Figure 3.	Root Zone Illustration
Figure 4.	Ashland Land Uses
Figure 5.	Registered Well Locations
Figure 6.	Sampling Locations
Figure 7.	Geologic Profile
Figure 8.	Groundwater Elevations
Figure 9.	Soil Sampling Results
Figure 10.	Groundwater Sampling Results
Figure 11.	Variability of Nitrate-N in Deep Profiles in the Same Field
Figure 12.	Average Nitrate-N in Soil Samples

LIST OF TABLES

<u>Number</u>	<u>Title</u> <u>Page</u>
Table 1.	Ashland Study Area Land Use Categories
Table 2.	Registered Wells Within and Surrounding the Ashland CWSPA
Table 3.	Municipal Well Groundwater Nitrate-N Sample
Table 4.	Ashland Study Area - Groundwater Level Measurements
Table 5.	Groundwater Level Measurements in Monitoring Well
Table 6.	Summary of Nitrate Results for Shallow Borings
Table 7.	Summary of Nitrate Results for Deep Soil Borings with Land Use Categories 5-12
Table 8.	Ashland CWSPA - Direct Push Groundwater Sample Results
Table 9.	QA/QC Sample Percent Differences
Table 10.	Monitoring Well Groundwater Result
Table 11.	Nitrate-N Loading in Soils by Land Use

LIST OF ACRONYMS AND ABBREVIATIONS

AMSL	above mean sea level
bgs	below ground surface
CWSPA	Community Water System Protection Area
DS	deep Sample
EA	EA Engineering, Science, and Technology, Inc., PBC
EPA	United States Environmental Protection Agency
ft	foot (feet)
in	inch (inches)
lb/ac-ft	Pounds per acre-foot (pounds per one acre of surface area to a depth of one foot)
LPNNRD	Lower Platte North Natural Resources District
LPSNRD	Lower Platte South Natural Resources District
MCL	Maximum Contaminant Level
mL	milliliter
MW	monitoring well
Ν	Nitrogen
NAD83	1983 North American Datum
NAVD88	1988 North American Vertical Datum
NDEE	Nebraska Department of Environment and Energy (formerly NDEQ)
NDEQ	Nebraska Department of Environmental Quality
NDNR	Nebraska Department of Natural Resources
NDHHS	Nebraska Department of Health and Human Services
ppm	parts per million
PVC	polyvinyl chloride
QA	quality assurance
QC	quality control
RTK GPS	real-time kinematic global positioning system
SDWA	Safe Drinking Water Act
SOP	Standard Operating Procedure
SS	shallow sample
SWAP	Source Water Assessment Planning
WhAEM	Wellhead Analytic Element Model
WHPP	Wellhead Protection Programs

EXECUTIVE SUMMARY

Background and Purpose

This report has been prepared by EA Engineering, Science, and Technology, Inc., PBC (EA) to document the results of the nitrate-N verification study for the Ashland, Nebraska Community Water System Protection Area (CWSPA), which is supplied by groundwater from four public water supply wells. The purpose of this study was to identify the source and extent of the reported nitrate-N within the Ashland CWSPA. The Lower Platte South Natural Resources District (LPSNRD) requires that the source of nitrate-N be verified as non-point sources before a Phase II nitrogen management area is declared. The LPSNRD is leading the investigation, with support from Lower Platte North Natural Resources District (LPNNRD).

Field Activities and Results

Field activities were completed from 16 November 2020 through 13 December 2020. Field activities included installation of a monitoring well; collection of 199 shallow soil samples at 8 sites; and collection of 76 deep soil samples at 12 sites.

The deep soil sampling and groundwater results suggest that widespread elevated nitrate-N levels exist in the soil profiles and in the groundwater.

Sources of Nitrate

The results generally indicate that the source of nitrate-N in groundwater across the CWSPA is likely due to application of commercial fertilizer or manure on cropland. No evidence of point sources such as industrial processes, leakage from an industrial or municipal wastewater site, or large spills were identified within the Ashland CWSPA. One area that is inconclusive is the area surrounding Site 021. Additional investigation would be needed to determine if the source of nitrate-N is from a point source or from non-point source.

Future leaching of nitrate-N through the vadose zone is anticipated. Changes to management practices have potential to reduce the addition of future nitrate loading to the vadose zone. It is recommended that the future sampling results from the monitoring wells be evaluated for trends.

Data Gaps

A data gap was identified regarding the area northwest of the Ashland CWSPA. A point source cannot be ruled out for the high levels of nitrate-N in groundwater at one site south of the intersection of County Road A and County Road 6. Additional investigation would be needed to determine if the source of nitrate-N is from a point source or from non-point source. The sparsity of data in this area renders the results inconclusive. It was decided to document the findings of the current field activities and allow the LPSNRD to review the data and decide if additional investigation was desired.

The study included the installation of one monitoring well. Typically, three monitoring wells would be installed to better characterize groundwater elevations, nitrate concentrations in the aquifer, and provide long term nitrate data. Two future monitoring well locations have been identified; but the LPSNRD decided to postpone the installation due to site constraints. The remaining two monitoring wells are projected to be installed in 2023.

1. INTRODUCTION

This report has been prepared by EA Engineering, Science & Technology, Inc., PBC (EA) for work related to a nitrate-Nitrogen (N) study regarding the Ashland community water system located within the Lower Platte South Natural Resources District (LPSNRD) and the Lower Platte North Natural Resources District (LPNNRD). EA has prepared this report as authorized through a contract with the LPSNRD.

The community of Ashland, Nebraska is located in southwestern Saunders County, approximately 28 miles east of Lincoln, Nebraska (Figure 1). The Ashland community water system protection area was selected for investigation by the LPSNRD based off the guidelines within the LPSNRD Groundwater Management Plan (LPSNRD, 2020). The LPSNRD initiated the nitrate-N verification study to assist in determining the source and extent of the reported nitrate-N within this area.

1.1 LPSNRD GROUNDWATER MANAGEMENT

The LPSNRD's philosophy regarding groundwater problems is that prevention is less costly than correction. Therefore, the LPSNRD has adopted programs that emphasize proactive protection of groundwater, rather than a reactive, corrective approach.

In 1994, the Nebraska Legislature directed the Natural Resources Districts to: 1) identify possible levels and sources of groundwater contamination within the area, 2) develop groundwater quality goals, 3) create long-term solutions necessary to prevent the levels of groundwater contaminants from becoming too high, 4) reduce high levels of contaminants sufficiently to eliminate health hazards, and 5) implement practices to stabilize, reduce, and prevent the occurrence, increase, or spread of groundwater contamination. The LPSNRD prepared its Ground Water Management Plan in 1995 to address these issues and has performed annual review of the Ground Water Management Plan since then. Along with the review, the groundwater rules and regulations have been updated several times, with the most recent update on 15 January 2020 (LPSNRD, 2020). These documents set out a proactive plan that establishes three separate phases, or levels, for managing groundwater quality. By default, the entire LPSNRD is currently in a Phase I area. The LPSNRD has already identified areas that are Phase II and Phase III based on previous Nitrate Verification Studies. Each successive phase progresses from the previous actions and implements stepped-up measures for dealing with changes in groundwater quality. In Phase II areas, additional education and water quality cost-share programs are implemented. In Phase III areas, additional monitoring and fertilizer/pesticide application requirements are implemented.

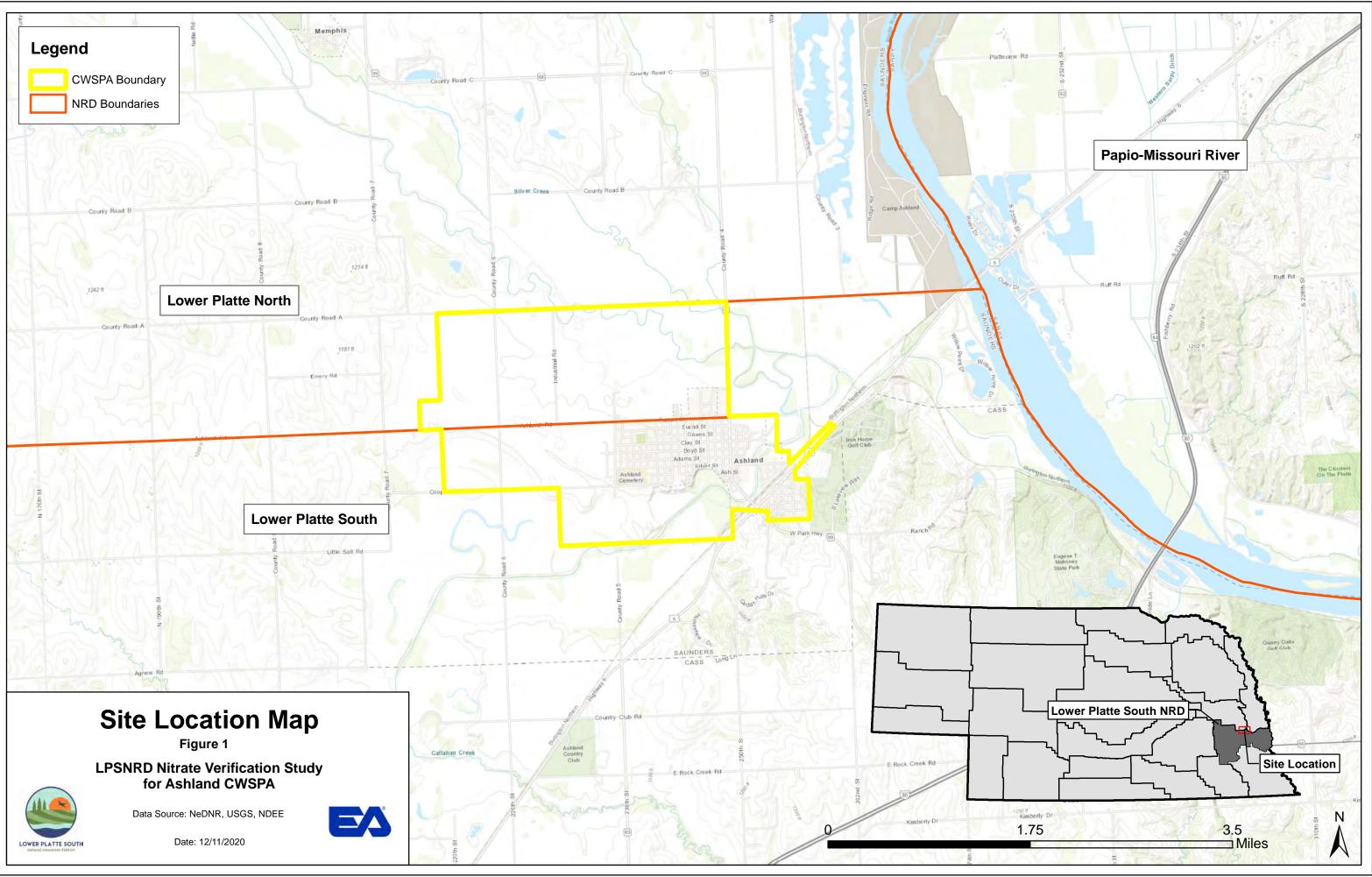
The Ground Water Management Plan defines multiple designated areas of management within the LPSNRD based on groundwater availability and uses. Community Water System Protection Areas (CWSPAs) is one of the designations for these areas of management. The LPSNRD has 31 CWSPAs corresponding to the 31 Wellhead Protection Areas (which are designated by the Nebraska Department of Environment and Energy [NDEE]) within its boundaries. A map of the CWSPA for Ashland is shown in Figure 1. Each CWSPA has its own network of groundwater wells that are sampled by the LPSNRD and is managed separately based on the levels of contaminants found in those wells. For a CWSPA to enter a higher phase, two criteria must be met. First, the monitoring results must exceed a phase 'trigger'. The triggers are based on whether a certain percentage of the wells are at or exceed a certain percentage of the Maximum Contaminant Level (MCL) of the contaminant. The groundwater nitrate-N MCL is determined by the US Environmental Protection Agency (EPA), and it is designated at 10 mg/L for adverse health effects in vulnerable populations. For a Phase II, 50% of the wells in the monitoring network must be at/or above 50% of the MCL. For a Phase III, 80% of the wells in the monitoring network must be at/or above 80% of the MCL. Second, the contamination must be verified as non-point source pollution through a verification study. If both conditions are met, the Board of Directors of the LPSNRD can designate the area as Phase II or III for the contaminant.

1.2 ASHLAND STUDY AREA

The study area includes the entire Ashland CWSPA, which encompasses approximately 3,302 acres and includes the City of Ashland and lands to the north, west, and south of the city (Figure 1). The CWSPA boundary extends north of Ashland about 1 mile, to the west of Ashland about $1\frac{1}{2}$ mile, and to the south of Ashland about $\frac{1}{2}$ mile.

This area is divided by the boundary between the LPSNRD and the LPNNRD, of which about 1,630 acres is within the LPNNRD jurisdiction. LPSNRD is serving as the lead agency, and the report was prepared from the perspective of the LPSNRD.

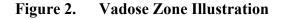
The Platte River is located 2 miles east of the CWSPA. Salt Creek and Wahoo Creek border the CWSPA to the south and northeast. Highway 6 and railroad tracks pass through the southeast corner of the CWSPA.

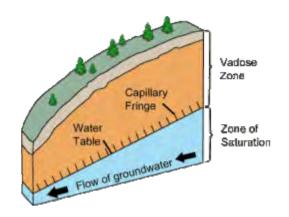

1.3 PURPOSE OF STUDY

Currently, the Ashland CWSPA is within a Phase I area; however, a portion of the Ashland CWSPA is within the larger Lower Salt Creek Groundwater Management Area, which has been designated as Phase II. The Ashland CWSPA is an area that the LPSNRD is considering more rigorous monitoring with a Phase II designation. Previous sampling results from the four Ashland public water supply wells have indicated that nitrate-N concentrations have reached the 10 mg/L MCL, with each well approaching or surpassing the 50% of the MCL, suggesting that the Phase II trigger requirements may be met. Throughout this report, these wells are labelled as PWS-1, PWS-2, PWS-3, and PWS-4 rather than their well registration numbers. Based on records through 2019, the highest nitrate-N concentration reported is 10.0 mg/L in PWS-4 (G-070339) in 2004. Data is further described in Section 3.6.1.

In accordance with the Ground Water Management Plan, these sampling results trigger the need for a verification study to determine the source of nitrate-N and whether it is warranted to change the entire Ashland CWSPA from a Phase I to a Phase II Ground Water Management Area.

The purpose of this study is to identify the source and extent of the reported nitrate-N within the Ashland CWSPA. The report presents the findings of the study and documents the procedures used in the field effort. Results and conclusions are anticipated to provide information to allow the LPSNRD Board of Directors to determine if the Ashland CWSPA should be designated as a Phase II area.


F:\State & Local\NRD\Lower Platte South\PROJECTS\6333202 - Nitrate 2019\6 - Evaluation\1 - Raymond Report Evaluation\MXD\Figure 1 - Site Location Map Raymond.mxd scorcoran



2. BACKGROUND INFORMATION

2.1 KEY TERMS

<u>Vadose Zone</u> – The vadose zone is the area between the land surface and the top of the regional water table, as illustrated in Figure 2 (courtesy of USGS). For this study, the portion of the vadose zone within 15 feet (ft) of the ground surface is called the shallow vadose zone. The portion of the vadose zone below 15 ft to the water table is called the deep vadose zone. Samples for this study were collected from both the shallow and deep vadose zones.

<u>Root Zone</u> – The root zone is the zone in a soil profile penetrated by plant roots, as illustrated in Figure 3 (Scherer and Steele, 2019) for various crops. Throughout this study the root zone was defined to include the top 6 ft immediately below the ground surface and may be within with shallow vadose zone or zone of saturation.

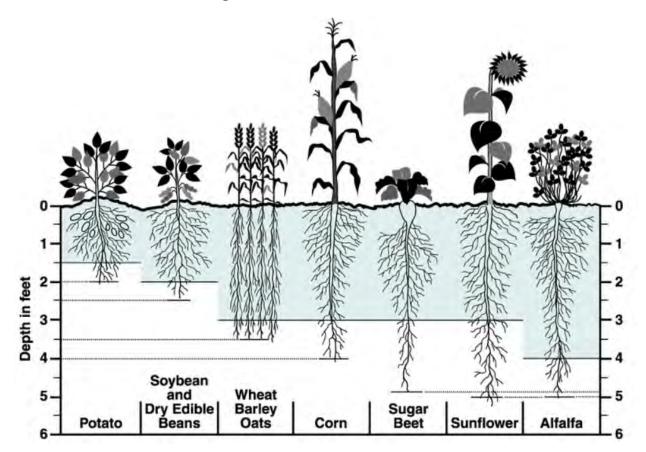


Figure 3. Root Zone Illustration

2.2 NITRATE-NITROGEN (NO₃-N)

Nitrogen (N) is an essential plant nutrient and is naturally produced by plants and animals. Additional sources of nitrogen in the environment include livestock operations, septic and waste systems, application of fertilizer for lawn and garden care, and for crop production. There are several forms of nitrogen, including nitrate (NO_3^-), nitrite (NO_2^-), and ammonia (NH_3). Nitrate is the form of nitrogen most easily taken up by plants and is the most common form found in the environment. Laboratory results, as used in this study, report the pounds per acre-foot (lb/ac-ft) of nitrogen in the form of nitrate-N (NO_3 -N).

2.2.1 Background Levels and Leaching

Nitrate is present in every natural system at different levels. These naturally occurring nitrogen levels are commonly referred to as background levels. In natural ecosystems, nitrate-N is cycled between the atmosphere and shallow soils, and only small amounts of nitrate are leached below the root zone of plants. Soil below the root zone typically has background nitrate-N levels below 2 parts per million (ppm), which is equivalent to approximately 8 lb/ac-ft of nitrogen in the soil (Exner et.al., 2014). Therefore, individual sample results above 8 lb/ac-ft were considered elevated for this investigation. When more nitrogen is added than an ecosystem can uptake,

leaching of nitrate-N below the root zone can occur. In many places across Nebraska, groundwater quality has been impacted by increasing nitrate-N concentrations (Spalding & Exner, 1993).

When nitrate-N leaching occurs within the capture zone of a well field, the nitrate-N is transported with groundwater flow through the subsurface to the wells resulting in contamination to drinking water supplies. Since nitrate-N in drinking water can cause adverse health effects, State and Federal regulations established an MCL of 10 ppm for nitrate-N in drinking water.

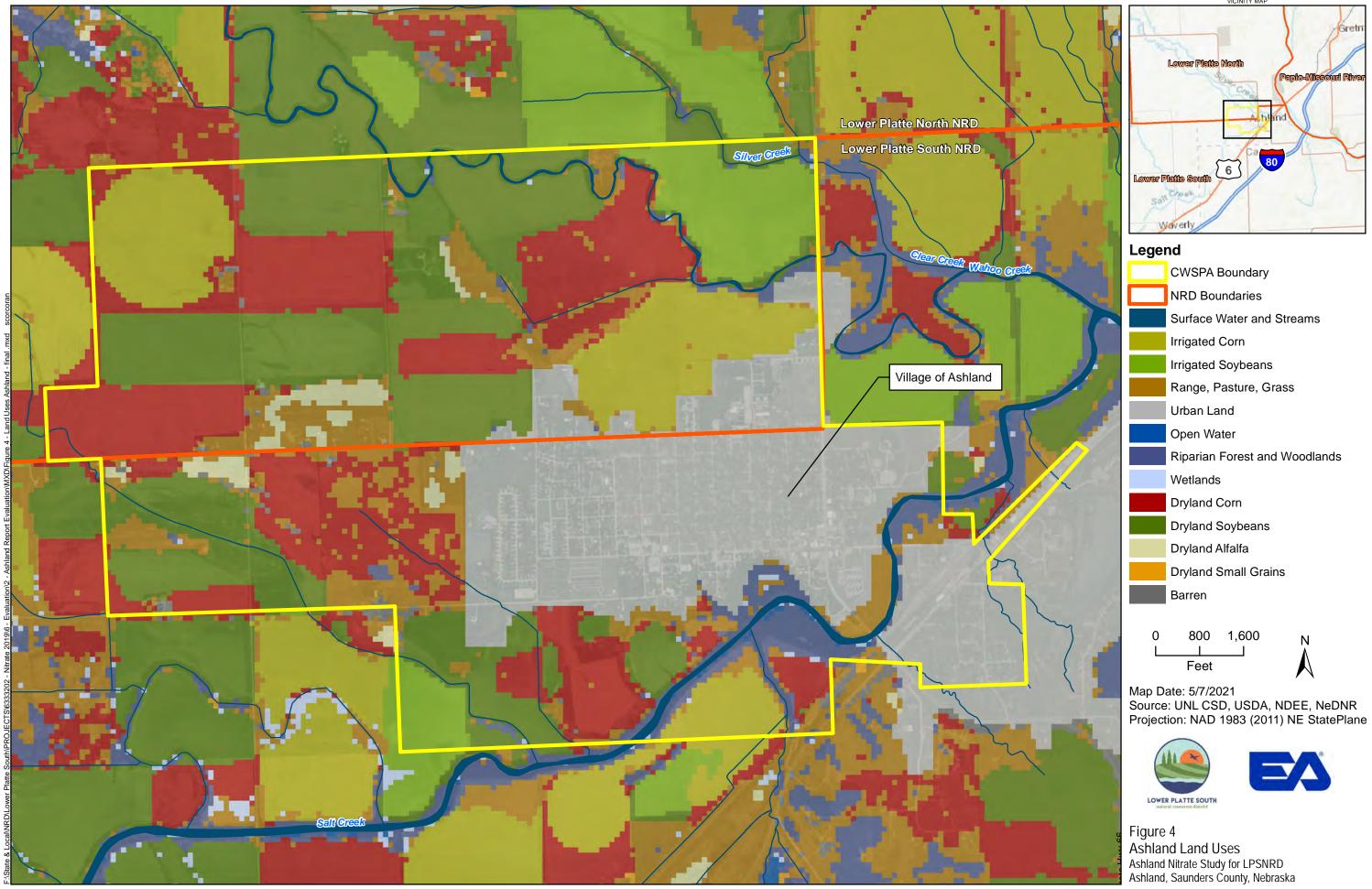
In addition to the above State and Federal regulations, the LPSNRD has established 'trigger' levels for the management of non-point source nitrate-N. The Phase II and Phase III triggers are described in Section 1.1.

2.2.2 Point and Non-Point Sources

Nitrate-N in groundwater can originate from both point source and non-point sources. Point sources include those releases of nitrate-N that can be traced back to a particular point or spot such as contamination through a pipe or drain, industrial processes, sewage disposal systems, leakage from an industrial or municipal wastewater site, or a spill from a trailer of chemicals. Non-point sources of nitrate-N include chemical and manure fertilizer runoff during rainfall events and leaching beneath cropland, parks, lawns, and gardens.

3. PHYSICAL SETTING

3.1 LAND USE


The Ashland CWSPA encompasses approximately 3,302 acres. A breakdown of land use within the CWSPA is provided in Table 1. The most predominant land use type is Urban Land, Dryland Soybeans, and Dryland Corn, which accounts for a majority of the land use at 25%, 24%, and 20% respectively. Remaining land use within the CWSPA is a mixture of range, pasture, grass, irrigated corn, irrigated soybeans, dryland alfalfa and small grains, and natural areas (riparian forest and woodlands, wetlands), open water, and barren areas.

Land Use	Acres	%
Urban Land	838.9	25.4
Dryland Soybeans	796.0	24.1
Dryland Corn	674.7	20.4
Range, Pasture, Grass	320.1	9.7
Irrigated Corn	312.5	9.5
Irrigated Soybeans	160.8	4.9
Riparian Forest and Woodlands	119.9	3.6
Dryland Alfalfa	49.5	1.5
Barren	17.9	0.5
Wetlands	7.6	0.2
Open Water	3.8	0.1
Dryland Small Grains	0.2	0.0
Total	3,302	100.0

Table 1. Ashland Study Area Land Use Categories

Source: University of Nebraska-Lincoln, Conservation Survey Division, 2005. https://snr.unl.edu/data/geographygis/land.aspx

Land use within and surrounding the CWSPA is illustrated in Figure 4. Dryland and irrigated practices take place in the area. Four irrigation wells exist within the CWSPA, and evidence of recent irrigation was found during review of aerial images and during visual reconnaissance on two properties. Irrigation practices can impact the aquifer storage dependent on accumulated water use throughout the growing seasons.

3.2 REGIONAL HYDROGEOLOGY

Saunders County includes two main aquifers consisting of unconsolidated alluvial sediments. The two main deposits are identified as the Platte River valley and the Todd Valley aquifers. The greatest saturated thicknesses occur towards the western portion of the county, where paleovalleys are present, with saturated thicknesses between 100 and 230 feet. Within the Platte River valley, these alluvial sediments range from 40 to 100 feet in thickness. Below the unconsolidated sediments of southeast Saunders County lies consolidated Pennsylvanian bedrock consisting of shale, limestone, and mudstone (Divine, 2015). Well fields currently exist in the eastern portion of Saunders County, providing municipal water supplies to the cities of Lincoln and Omaha.

3.3 SITE HYDROGEOLOGY

The City of Ashland lies within the Platte River valley of southeast Saunders County. The local aquifer consists mainly of unconsolidated deposits of the Quaternary (Divine, 2015). Localized surface elevations range from approximately 1,045 feet to 1,200 feet above mean sea level (AMSL). Depth to water in the area ranges from approximately 0 to 100 feet below ground surface (bgs). Aquifers in the area are hydrologically connected and believed to be also connected to surface water. Overall, water quality is good in the local aquifers, although nitrate contamination is considered to be the most widespread (Divine, 2015).

3.4 SURFACE DRAINAGE

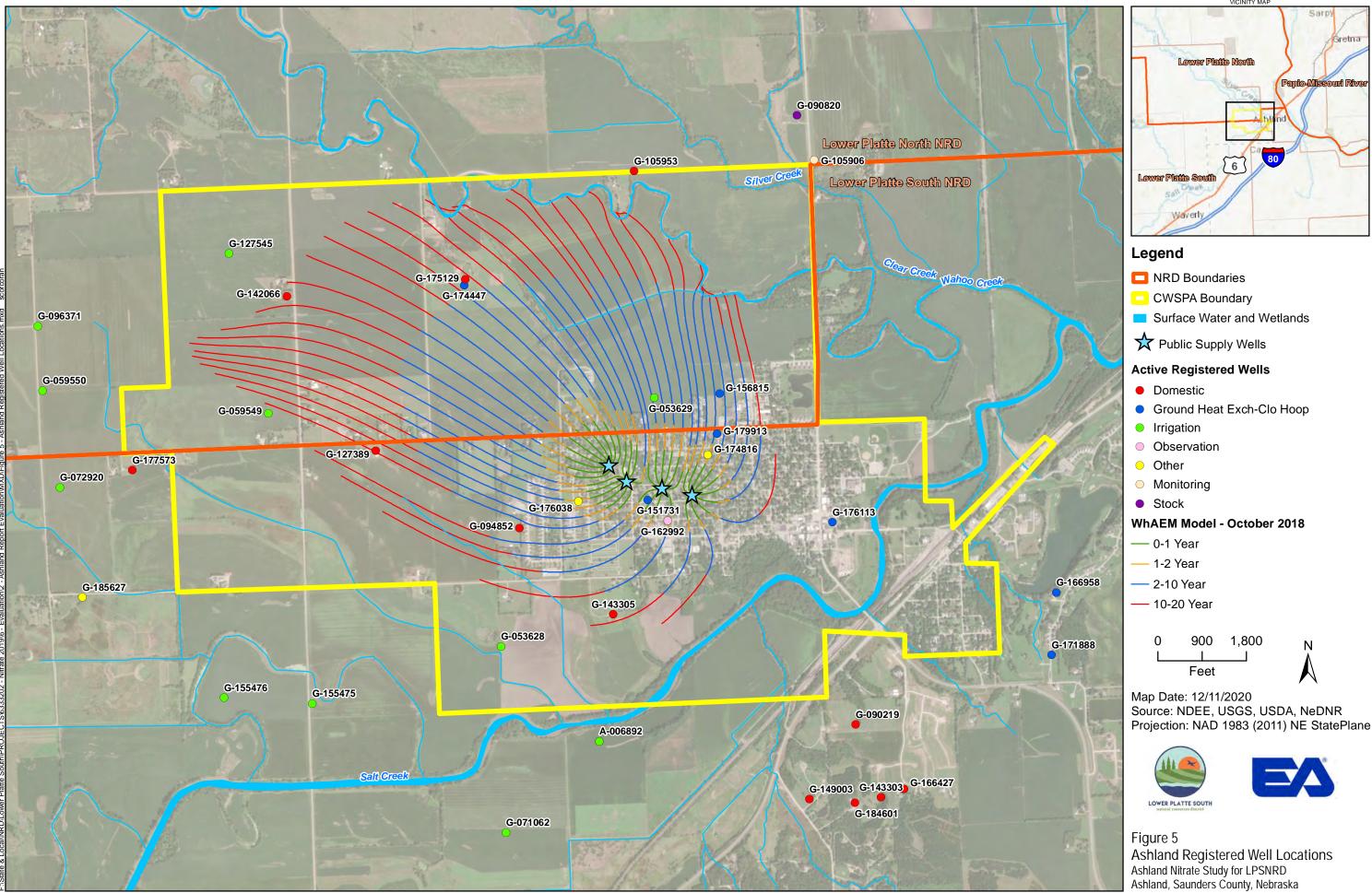
The Ashland CWSPA is located within a floodplain valley with several creeks crossing through the CWSPA. Wahoo Creek and Clear Creek are both located in the northeast corner where both creeks drain into Salt Creek one mile west of Ashland CWSPA. Salt Creek cuts through the CWSPA in the south and drains into the Platte River located 2.5 miles west of Ashland CWSPA. Approximately 106 acres located in the southwestern corner of the CWSPA are designated as wetland mitigation lands owned by the State of Nebraska - Department of Roads. Typical ground surface elevation does not vary significantly across the CWSPA boundary. The elevation varies slightly, generally from west to east from about 1,107 ft AMSL in the west to 1,064 ft AMSL in the east.

3.5 POINT SOURCE INVESTIGATION

An investigation was conducted by EA to identify any recorded contaminant spills in the Ashland CWSPA area using readily available resources in Saunders County. The investigation did not identify any point source locations of reported nitrate-N spills in or near the Ashland CWSPA. The records indicate that two wells within the CWSPA have been sampled for nitrate-N. The two wells have reported nitrate-N samples above the MCL. Three samples were taken from an irrigation well located west of the City of Ashland and reported nitrate-N concentrations ranging from 10 to 11.4 mg/L between 1994 and 2006. A domestic well was sampled four times since 1979 with nitrate-N ranging from 7.7 mg/L to 12 mg/L. Based on the groundwater

modeling by NDEE for the CWSPA, these two wells are expected to be generally upgradient to the public wells.

3.6 REGISTERED WELLS


Registered wells from the Nebraska Department of Natural Resources (NDNR) database were identified inside Ashland CWSPA and within a ¹/₂ mile surrounding the Ashland CWSPA as shown in Figure 5 and listed in Table 2.

A total of 21 registered wells are currently active within the CWSPA; including four public water supply wells, five domestic wells, five ground heat exchange wells, four irrigation wells one livestock well and two wells categorized as other.

Additional wells surrounding the CWSPA are shown in Table 2 to illustrate types of wells, typical well depths, and pumping rates for wells in the vicinity.

Wells Within Ashland CWSPA Boundary				
Location	Use	Year	Well Depth	Pump Rate
		Completed	(ft)	(gallons per minute)
G-140851	Municipal	2006	127	300
G-185065	Municipal	2016	135	400
A-10589C	Municipal	1981	122	750
G-070339	Municipal	1981	120	650
G-094852	Domestic	1997	97	10
G-127389	Domestic	2003	117	10
G-142066	Domestic	2006	75	15
G-143305	Domestic	2006	72	10
G-175129	Domestic	2014	70	30
G-151731	Ground Heat Exchange	2007	120	0
G-156815	Ground Heat Exchange	2010	200	0
G-174447	Ground Heat Exchange	2014	205	0
G-176113	Ground Heat Exchange	2014	300	0
G-179913	Ground Heat Exchange	2016	200	0
G-053628	Irrigation	1976	80	900
G-053629	Irrigation	1976	96	700
G-059549	Irrigation	1977	103	0
G-127545	Irrigation	2004	130	500
G-162992	Observation	2012	120	0
G-174816	Other	2014	102	0
G-176038	Other	2015	115	0
	Wells Within 0.5 M	liles of Ashland	CWSPA Bounda	ary
G-090219	Domestic	1996	150	0
G-105953	Domestic	1998	75	15
G-143303	Domestic	2006	152	20
G-149003	Domestic	2007	100	10
G-166427	Domestic	2013	150	20
G-177573	Domestic	2015	106	15
G-184601	Domestic	2018	118	30
G-166958	Ground Heat Exchange	2013	100	0
G-171888	Ground Heat Exchange	2014	205	0
A-006892	Irrigation	1954	0	0
G-059550	Irrigation	1977	117	400
G-071062	Irrigation	1988	80	850
G-072920	Irrigation	1990	90	400
G-096371	Irrigation	1998	170	700
G-155475	Irrigation	1930	80	500
G-155476	Irrigation	1930	80	500
G-185627	Other	2017	64	200
G-105906	Monitoring	1990	40	0
G-090820	Livestock	1997	38	20

Table 2. Registered Wells Within and Surrounding the Ashland CWSPA

3.6.1 Public Water Supply Wells

The Village of Ashland obtains drinking water from four wells: PWS-1 (G-140851) originally drilled in 2006 to a depth of 127 ft, PWS-2 (G-185065) originally drilled in 2016 to a depth of 135 ft, PWS-3 (A-010589C) originally drilled in 1981 to a depth of 122 ft, and PWS-4 (G-070339) originally installed in 1974 to a depth of 120 ft. PWS-1 has a screened interval at 94 ft to 127 ft. PWS-2 has a screened interval at 111 to 131 ft. The screened interval for PWS-3 and PWS-4 is unknown.

The Safe Drinking Water Act (SDWA) sets national limits on contaminant levels in drinking water to ensure that the water is safe for human consumption. The EPA regulates how often public water systems must monitor their water for contaminants. Generally, the larger the population served by a water system, the more frequent the monitoring and reporting requirements. Groundwater samples are collected by local communities to meet these regulatory requirements. The Nebraska Department of Health and Human Services (NDHHS) regulates the sample collection, analyzes the samples, oversees quality assurance (QA) and quality control (QC) procedures, and reports the results to the community and EPA.

Historical nitrate-N results for the Ashland municipal wells for dates ranging from 2003 to 2021 available through NDHHS are presented in Table 3. Each well is capable of being sampled separately and the wells are not connected to a treatment system. Each well is used to store water in the water tower. There is no specific mixing ratio. Nitrate-N samples are sampled from each well. PWS-4 (G-070339) is the only well to have reached the MCL for nitrate-N of 10.0 mg/L nitrate-N since installation. PWS-2 (G-185065) reached a maximum nitrate-N of 7.6 ppm in 2018. Groundwater nitrate-N in PWS-1 is slightly increasing and nitrate-N in PWS-3 fluctuates and the trend is generally consistent around 5 mg/L. Groundwater nitrate-N in PWS-4 is generally decreasing. In recent years, all four wells consistently record nitrate-N at about 50% of the MCL.

Nitrate-N Concentrations (mg/L) – Public Water Supply Wells				
Sample Date	PWS-1	PWS-2	PWS-3	PWS-4
	(G-140851)	(G-185065)	(A-010589C)	(G-070339)
8/20/2003	-	7.6	5.3	5.4
8/24/2004	-	6.3	4.7	10.0
8/16/2005	-	6.4	4.5	5.8
8/17/2006	-	-	4.6	5.8
8/18/2006	-	6.7	-	-
6/26/2007	-	6.5	4.5	7.8
6/18/2008	3.0	5.9	4.6	7.1
6/3/2009	2.8	5.2	4.7	5.3
7/2/2010	3.0	5.2	-	4.5
10/6/2010	-	-	4.0	-
5/4/2011	3.3	4.8	5.2	4.1
6/5/2012	3.7	4.3	5.5	3.6
6/19/2013	3.2	4.8	5.1	5.6
6/25/2014	3.4	-	4.7	6.2
5/24/2016	3.1	-	4.7	5.3
10/3/2017	4.8	-	4.4	4.4
7/25/2018	4.1	-	5.9	-
9/10/2019	4.1	4.83	4.6	5.8
9/17/2020	4.49	5.05	5.04	5.93
9/30/2021	3.76	4.68	3.72	5.24

Table 3. Municipal Well Groundwater Nitrate-N Sample

3.7 WELLHEAD ANALYTICAL ELEMENT MODEL REVIEW

Wellhead Analytic Element Model (WhAEM) is a public domain, groundwater flow model designed to facilitate capture zone delineation and protection area mapping intended to support the State's Wellhead Protection Programs (WHPP) and Source Water Assessment Planning (SWAP) for public water supplies. The WhAEM for the Ashland municipal wells was originally run by the Nebraska Department of Environmental Quality (NDEQ; currently titled Nebraska Department of Environment and Energy, NDEE) in 2018 using readily available information. In order to review the previous results, the newest version of the model (WhAEM2000) was downloaded from the EPA's website (EPA, 2007). Hard copies of the original model results and available supporting documentation were obtained from the NDEE.

The WhAEM Model Review Report concluded the base of aquifer elevation in Ashland is 991 feet, which was a reasonable estimate based on the information available at the time. Aquifer thickness was reported to include 55 to 99 feet of sand and gravel deposits with the model using a value of 31 feet of saturated thickness. These estimates generally match the results from the boring logs for the one monitoring well. The hydraulic conductivity was reported at 109.7 feet per day, which appeared reasonable. A low porosity was reported at 0.20; however, this suggested value may be low, but appropriate as a conservative estimate.

The conclusion from the review of the WhAEM Model suggested that while some of the parameter assumptions seemed low, the assumptions appeared to be reasonable. A full report for the WhAEM Review Report and associated information can be found in Appendix A.

4. METHODS OF INVESTIGATION

The Ashland nitrate-N verification study involved an inventory and assessment of available information, the collection and analyses of shallow soil samples, subsurface soil samples, and groundwater samples, and the installation of groundwater monitoring wells.

The field work for sample collection was conducted in November and December 2020, and the field work for monitoring well installation was conducted in November 2021. The field work was completed in general conformance with the Work Plan, Nitrate Studies for Two Communities Water Systems Raymond and Ashland, Nebraska, Nebraska (EA, 2020). The methods and procedures of the investigation are summarized in the following sections, and more details are discussed in the Work Plan.

4.1 SHALLOW SAMPLING

The objective of the shallow soil sampling was to obtain nitrate-N levels both within and below the root zone. Shallow soil sample locations were chosen to be representative of different soil types, topography, drainage, and land use.

A small truck-mounted Giddings rig was used to collect shallow soil samples from the surface to 15 ft below grade. Shallow soil samples were collected by pushing a 1 ½ inch interior diameter by 60-inch-long sample tube. Soil samples were collected from 3 ft intervals and were homogenized by thoroughly mixing retrieved soil from each sampling interval in a large, rubberized container. Each sample sent to the laboratory was comprised of several sub-samples randomly collected from throughout the rubberized container. The homogenized samples were analyzed for nitrate-N.

Shallow soil samples were collected from 8 sites, with 5 borings per site, resulting in 40 sample locations. Samples were collected from 5 depth intervals at each location (increments of 3 ft, to a maximum depth of 15 ft). This yielded a total of 199 shallow samples collected.

4.2 DIRECT PUSH SAMPLING

Direct push technology was used to collect both subsurface soil samples and groundwater samples. The objective of the direct push sampling was to obtain deeper nitrate-N soil profiles, to provide additional geologic information, and to collect representative groundwater samples.

The direct push sampling locations were selected within the CWSPA based upon geographical availability.

Soil borings were properly abandoned as required by Nebraska Title 178 NAC 12 (NDHHS, 2005) by filling the boreholes with bentonite to within 3 ft of the surface. The remaining 3 ft was backfilled with native earth material with mounding for settling.

4.2.1 Deep Sampling

Direct push methods were used to collect deep soil samples at 5 ft intervals beginning at the surface and ending at the water table of the unconfined aquifer (defined as 5 ft of continuous saturated soil) or refusal. When the water table was encountered in clay, the boring was continued until sand was encountered to allow for groundwater sample collection. The soil sampling was conducted using a truck-mounted hydraulic direct-push drill rig. A direct-push soil sampling probe was advanced under hydraulic pressure to the selected sample depth where a representative sample from each interval was retrieved.

A lithological description of each recovered sample interval was recorded on a standard boring log form. Information recorded included the boring location, drilling and sampling methods, sampling interval, sample descriptions, and soil descriptions. Soil descriptions were recorded in accordance with the Unified Soil Classification System. Boring Logs are included in Appendix B.

A soil sample from each interval was obtained by thoroughly mixing retrieved soil in a large, rubberized container. The sample was comprised of one sample the length of the retrieved 5 ft sample probe and randomly collected from throughout the rubberized container.

Deep soil samples were collected from 11 sites, with 2 boring locations at one site, resulting in 12 sample locations. Samples were collected from 3 to 10 depth intervals at each location (increments of 5 ft, to a final depth range of 15 to 50 ft). This yielded a total of 76 deep samples collected and sent to the laboratory for analysis.

4.2.2 Groundwater Sampling

A groundwater sample was collected from the unconfined aquifer at all 12 of the direct push boring locations. Groundwater samples were collected utilizing a water sampling probe which was advanced under hydraulic pressure to the selected sample depth. The sample probe was then extruded exposing a 1-inch to 1 ¹/₄-inch outside diameter, stainless steel slotted screen that was connected to a series of threaded steel probe rods and an expendable point.

Groundwater samples were extracted from inside the probe using dedicated polyethylene sample tubing and attached mini-check valve. Groundwater samples were collected in a 500 milliliter (mL) plastic laboratory sample container, preserved with sulfuric acid (H₂SO₄), placed in a cooler filled with ice, and delivered to the LPSNRD for laboratory analyses of nitrate-N.

4.3 MONITORING WELLS

The primary purpose of the groundwater monitoring wells is to provide semi-permanent locations for collection of groundwater samples to monitor nitrate-N levels and other constituents and provide reliable information related to groundwater levels. Additional geologic information is gathered during drilling from the drill cuttings. One permanent monitoring well was installed in the Ashland CWSPA. Two additional well locations have been identified to be considered in

the future but were not installed at this time due to land access. One future well location is on the Nebraska Department of Transportation lands west of Ashland. This location has maintenance activities planned that prevented installation of the monitoring well during the study. The second future location is on lands owned by the Ashland Public Schools. The school was undergoing expansion construction and could not commit to a monitoring well location until construction activities were completed. For both wells, installation opportunities may become available in 2023.

The following subsections describe the methods of installation and sampling procedures.

4.3.1 Monitoring Well Drilling

Subsurface drilling was completed using a truck-mounted mud rotary drilling rig. A six-inch diameter drilling bit was attached to the drilling stem and advanced until bedrock was encountered, or to a depth where a productive screened interval within the targeted aquifer was reached. Soil cuttings were collected from the drill wash. Cuttings were collected approximately every 5 ft, or when a lithological change was encountered.

A lithological description was recorded on a standard boring log form. Information recorded included the boring location, drilling and sampling methods, sampling interval, sample descriptions, and soil descriptions. Soil descriptions were recorded in accordance with the Unified Soil Classification System. Boring Logs are included in Appendix B.

Since mud rotary drilling was used to install the monitoring wells, no soil samples were collected for laboratory analysis.

Upon terminating the boring at bedrock, the drill bit and stem were removed from the bore hole. A 9-inch diameter drill bit was then attached to the drill stem and advanced to a depth approximately halfway between the regional water table and bedrock for well screen installation.

4.3.2 Monitoring Well Construction and Development

Monitoring well AMW-1 was installed on private property. This monitoring well was constructed and installed by a Nebraska licensed well drilling professional in accordance with Nebraska Water Well Standards, Title 178 NAC12, Regulations Governing Water Well Construction, Pump Installation and Water Well Decommissioning Standards (NDHHS, 2005).

The well was constructed with 4-inch diameter, threaded, schedule 40 polyvinyl chloride (PVC) casing. The well screen is comprised of 10 ft of 0.010-slot factory slotted screen. Sand filter pack was placed to a minimum of 2 ft above the well screen. A minimum 5 ft bentonite seal and a high solids bentonite grout to the surface were placed on top of the sand filter pack. Well construction diagrams are included in Appendix B.

The well was developed after construction by placing a pump near the bottom of the well and purging until clear water was obtained or a maximum of two hours had elapsed.

After development, a Grundfos submersible pump connected to 1-inch schedule 80 PVC drop pipe was installed in each well, with a sampling port and electrical plug at the top of the well casing. Each well was completed with a stick-up protective casing, concrete pad, and bollards.

4.3.3 Monitoring Well Groundwater Sampling

The LPSNRD periodically samples and conducts water level measurements from monitoring wells and several other well types (irrigation, municipal, etc.) throughout the LPSNRD to help determine trends in both water quality and quantity. In some cases, wells are drilled strictly for monitoring purposes, and other times existing municipal or irrigation wells are added to the network through agreements with landowners.

In December 2021, the LPSNRD collected a groundwater sample from the Ashland monitoring well installed as part of this study. The result of the LPSNRD groundwater sampling was reviewed and incorporated into this report.

4.4 SAMPLE IDENTIFICATION

The following information was recorded in the field for each sample collected.

- Date/time of sampling
- Land use description at time of sampling
- Sampling depth information
- Direct push/boring identification number
- Laboratory method(s)

Unique sample identification numbers were assigned to each sample collected. Samples collected during the field effort (November-December 2020 and November-December 2021) were given the acronym "DS" for deep sample by direct push soil sample locations, "SS" for shallow soil sample locations, and "MW" for monitoring well sample locations.

For example, sample number ADS020 was an Ashland (A) deep sample by direct push (DS) at location 020.

4.5 QA/QC PROCEDURES

Quality assurance samples (duplicates) were collected to provide a blind sample to the laboratory that could be compared to the original environmental sample results.

The QA/QC samples were given a different identification number from the original environmental sample. For example, the QA/QC sample collected from location ADS021-25 was identified as sample DSDUP-1 (QA sample). An internal duplicate tracking sheet was used to keep a record of duplicate and parent sample relationships.

4.6 UTILITY CLEARANCES

Utility clearances were conducted prior to any drilling or subsurface work. Utility locations were confirmed by locating manholes, poles, vaults, and other related structures. Two to ten business days prior to beginning drilling and sampling activities, the One-Call System and appropriate utility companies were contacted to locate buried utilities. Information collected during the utility surveys was documented in a field logbook.

4.7 SURVEY

4.7.1 Monitoring Well

Horizontal locations were established using a real-time kinematic (RTK) global positioning system (GPS) survey system to within 0.1 ft and referenced to the Nebraska Plane Coordinates, 1983 North American Datum (NAD83). Elevation (grade) for the monitoring well was established to the nearest 0.01 ft and referenced to the 1988 North American Vertical Datum (NAVD88). Elevation was established for both ground elevation at the well and measuring point (top of casing).

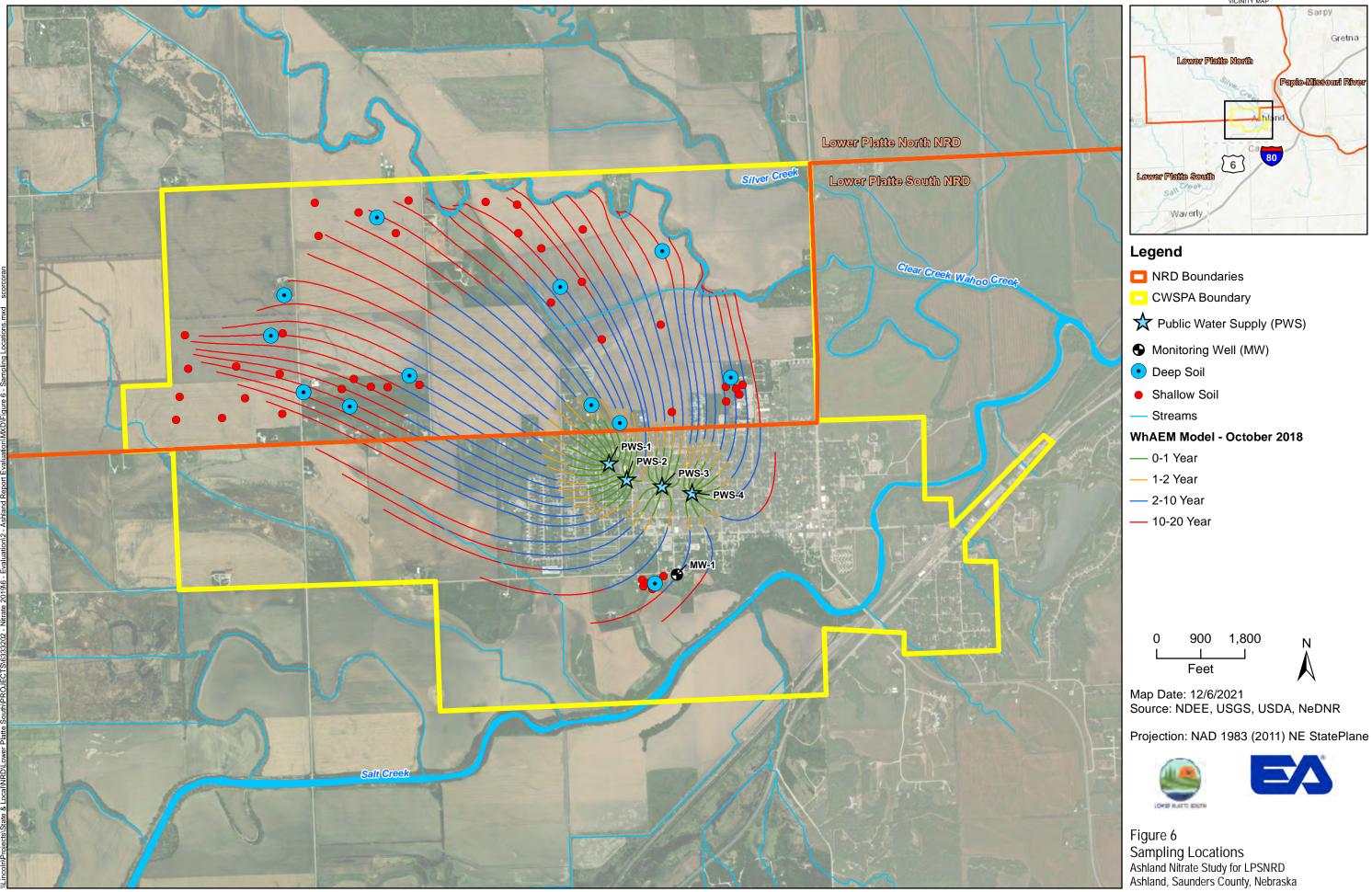
4.7.2 Deep Vadose Zone Sampling and Shallow Vadose Zone Sampling Locations

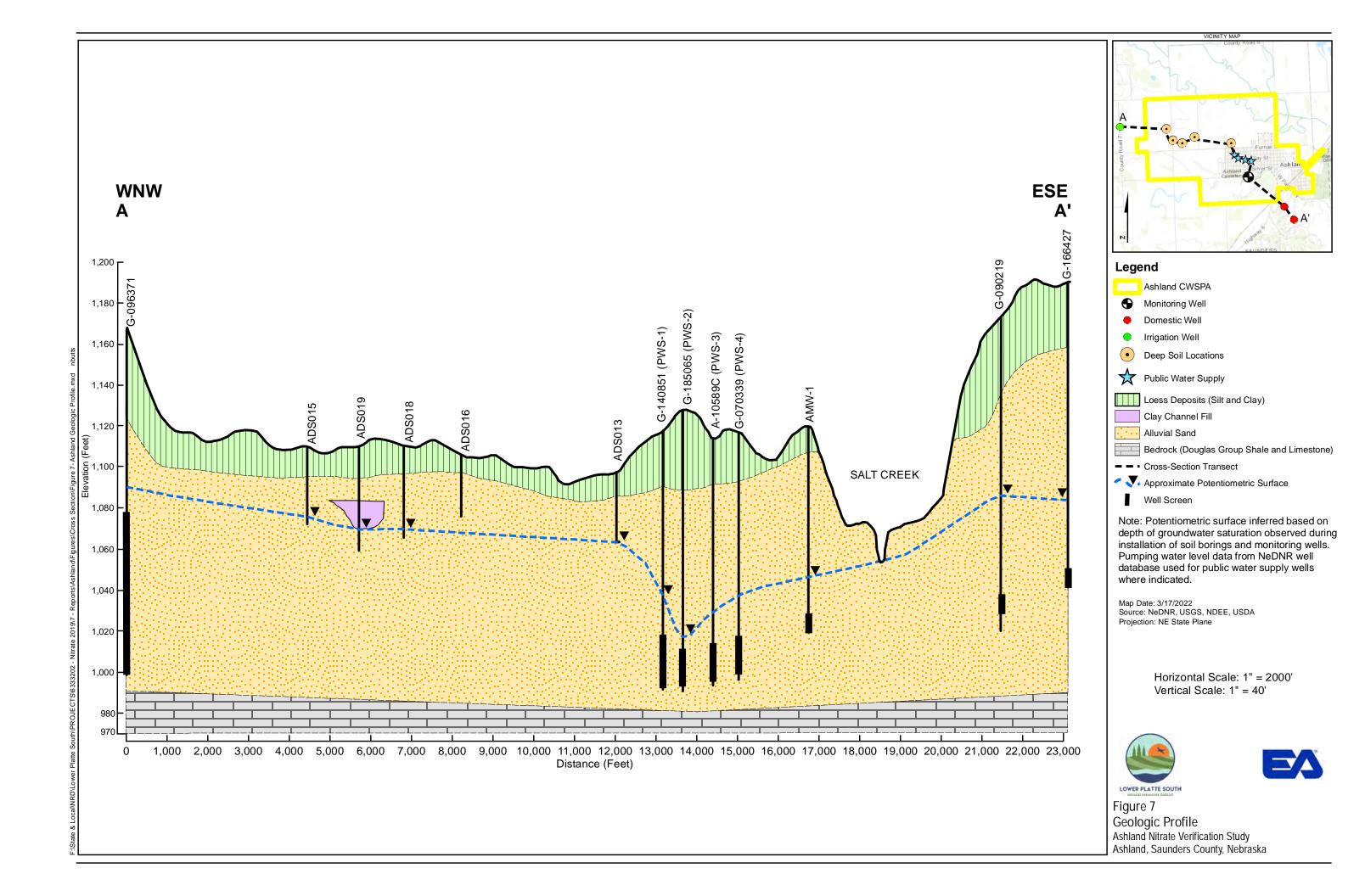
The horizontal location of the deep and shallow sampling locations was established to the nearest +/-2 ft using a hand-held GPS and referenced to the Nebraska State Plane Coordinates, 1983 NAD83. Soil sample elevations were determined from LiDAR based on GPS location.

4.7.3 Irrigation and Domestic Wells

No survey was completed for existing irrigation and domestic wells. State records available from the NDNR and aerial photography were used to determine the potential location of irrigation and domestic wells. A visual site reconnaissance was completed to verify well locations. Elevation (grade) of existing well locations was estimated using Digital Elevation Model topography obtained from LiDAR data. This information was only collected for wells included in the geologic profile.

5. RESULTS


This section presents the information obtained from the methods of investigation described in Section 4, including the review of the physical setting and regional site hydrogeology, and the results of the drilling, sampling, and laboratory analyses.


The deep soil samples and the shallow soils samples are categorized in this study by land use description at the time of sampling in November and December 2020 when field investigations took place. It is highly likely that land use changes from year to year using crop rotation methods; therefore, there are limitations in which conclusions can be made between corn and soybeans. Throughout the remainder of this report, land use descriptive terms are used to generalize deep and shallow soil categories to represent land use at the time of sampling.

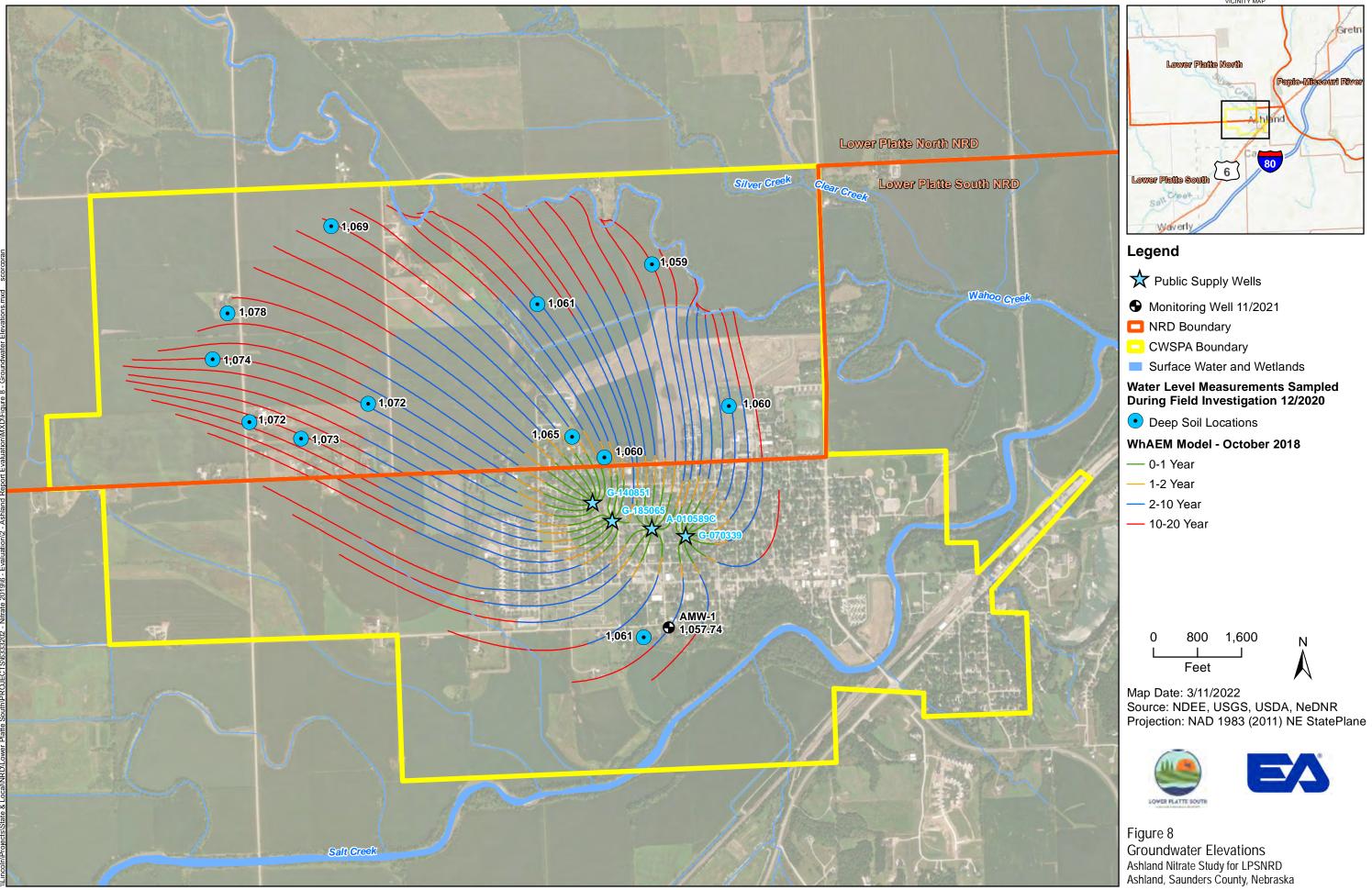
Locations for the monitoring well and soil sampling are shown in Figure 6.

5.1 GEOLOGIC PROFILE

Detailed geologic logs were prepared from the deep soil direct push soil samples and from the drill cuttings obtained during installation of the monitoring wells. A geologic profile was created based on the geologic logs collected for this study and well logs available for select registered wells. The geologic profile is shown in Figure 7.

5.2 GROUNDWATER LEVELS

5.2.1 Groundwater Levels During Field Investigation


Groundwater levels were measured in the deep soil borings with an electronic water level tape as noted on the boring logs and referenced to ground surface elevation. The measurements from the deep soil borings are summarized in Table 4. Depth to water varied from approximately 11 ft to 68 ft.

Location	Ground Elevation (ft)	Depth to Water from Ground (ft)	Water Elevation (ft)	Date
ADS011	1088	27	1061	12/7/2020
ADS012	1095	26	1069	12/13/2020
ADS013	1093	28	1065	12/9/2020
ADS014	1072	11	1061	12/7/2020
ADS015	1107	33	1074	12/9/2020
ADS016	1100	28	1072	12/8/2020
ADS017A	1070	11	1059	12/7/2020
ADS017B	1082	22	1060	12/8/2020
ADS018	1115	42	1073	12/8/2020
ADS019	1110	38	1072	12/8/2020
ADS020	1084	24	1060	12/8/2020
ADS021	1112	34	1078	12/7/2020

 Table 4.
 Ashland Study Area - Groundwater Level Measurements

The groundwater elevations from the field investigation are illustrated in Figure 8.

Figure 8. Groundwater Elevations

5.2.2 Groundwater Flow Direction

One monitoring well installation was completed during the project. The water level measurement from AMW-1 is shown in Table 5. Depth to water was measured from top of casing.

Table 5.	Groundwater Level Measurements in Monitoring Well
----------	---

Well Name	Measuring Point Elevation (ft AMSL)	Depth to Water (ft from TOC)	Water Level Elevation (ft AMSL)
AMW-1	1127.69	69.95	1057.74

Two additional monitoring wells will be considered in the future, depending on land access as previously described. Once all three wells are installed, the direction and gradient of groundwater flow can be determined using triangulation from water level measurements from three wells. However, the general groundwater flow direction can be approximated from the water measurement taken from the soil borings and shown in Figure 8. From these measurements, it can be seen that the groundwater flow direction is generally lower to the east and higher to the west, resulting in a groundwater flow direction that is generally towards the east.

5.3 NITRATE LOADING

Deep and shallow soil borings were conducted to determine the amount of nitrate present within the subsurface. Nitrate results are presented in several different ways. Individual soil sample results were reported from the laboratory in units of ppm, and these results were converted to nitrate pound(s) per acre-foot (N lb/ac-ft). Total nitrate for entire boring depth is the cumulative nitrate pound(s) per acre (N lb/ac) through the depth of the boring.

5.3.1 Shallow Soil Samples

The results from the shallow soil borings are summarized in Table 6 organized by site. Each site included five shallow soil borings. One exception is site ASS017 which was a field split between dryland soybeans with two shallow soil borings and irrigated corn with three soil borings. Figure 9 is a combination of all five shallow soil borings for each site. Appendix C contains the laboratory results. A detailed table of the shallow soil sampling results, including totals above and below the root zone, is included in Appendix D. Note that the land use listed is based on the observations during the field effort. It is recognized that crop rotation is a common practice in the area.

Site ID	Land Use	Boring Depth, ft	Maximum Nitrate-N, lb/ac-ft	Average Nitrate-N lb/ac-ft	Total Nitrate-N lb/ac
ASS011	Range, Pasture, Grass	15	43	7	104
ASS012	Dryland Corn	15	18	8	126
ASS014	Dryland Soybeans	15	7	4	56
ASS015	Dryland Corn	15	14	6	87
ASS016	Range, Pasture, Grass	15	11	5	76
ASS017A	Dryland Soybeans	15	4	4	65
ASS017B	Irrigated Corn	15	11	5	69
ASS019	Dryland Soybeans	15	7	4	65
ASS020	Range, Pasture, Grass	15	11	6	93

Table 6. Summary of Nitrate Results for Shallow Borings

5.3.2 Deep Soil Samples

For deep soil borings, the average nitrate (lb/ac-ft) and total nitrate (lb/ac) results are represented in Table 7 organized by site. Total nitrate is useful because it provides a convenient summation of the results from one boring deeper into the ground; however, it should be remembered that the depth of the boring influences the total nitrate (lb/ac) calculation and land use is categorized based on what land use was present at time of sampling. Figure 9 illustrates the variability of nitrate-N across all soil samples collected. Appendix C contains the laboratory results. A detailed table of the deep sampling results is included in Appendix E.

Table 7.	Summary	of Nitrate	Results fo	r Deep	Soil Boring	s with La	ind Use C	ategories

Site ID	Land Use at Time of Sampling	Boring Depth (ft)	Maximum Nitrate-N lb/ac-ft	Average Nitrate-N lb/ac-ft	Total Nitrate- N lb/ac
ADS011	Range, Pasture, Grass	30	7	4	126
ADS012	Dryland Corn	30	14	8	253
ADS013	Range, Pasture, Grass	35	7	4	144
ADS014	Dryland Soybeans	15	11	8	126
ADS015	Dryland Corn	35	18	9	325
ADS016	Range, Pasture, Grass	30	11	5	162
ADS017A	Dryland Soybeans	20	11	8	162
ADS017B	Irrigated Corn	25	18	14	343
ADS018	Range, Pasture, Grass	45	14	8	343
ADS019	Dryland Soybeans	50	14	11	559
ADS020	Range, Pasture, Grass	30	18	8	253
ADS021	Range, Pasture, Grass	35	83	27	956

EA Engineering, Science, and Technology, Inc., PBC

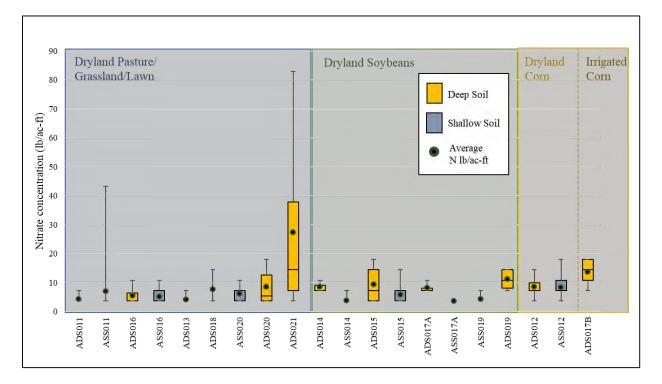


Figure 9. Soil Sampling Results

5.3.3 Direct Push Groundwater Samples

Groundwater samples were collected at the bottom of all twelve of the direct push boring locations. Direct push groundwater results varied from 0.24 mg/L at location AGW014 to 41.3 mg/L at location AGW021 as shown in Table 8. Figure 10 illustrates the groundwater nitrate-N concentration of samples collected from the direct push deep boring locations. Appendix C contains the laboratory results for the direct push groundwater samples. Six of the 12 groundwater samples collected exceeded the recommended groundwater nitrate-N limit of 10 mg/L MCL. This broad distribution of elevated nitrates suggests that the source of nitrate-N within the groundwater is likely from non-point source nitrogen leaching.

Sample Location	Land Use at Time of Sampling	Sample Depth (ft bgs)	Nitrate (mg/L)
AGW011	Range, Pasture, Grass	30	2.27
AGW012	Dryland Corn	30	12.4
AGW013	Range, Pasture, Grass	35	0.53
AGW014	Dryland Soybeans	15	0.24
AGW015	Dryland Corn	35	8.96
AGW016	Range, Pasture, Grass	30	8.76
AGW017A	Dryland Soybeans	20	0.31
AGW017B	Irrigated Corn	25	18.8
AGW018	Range, Pasture, Grass	45	14.1
AGW019	AGW019 Dryland Soybeans		11.9
AGW020	Range, Pasture, Grass	30	18.1
AGW021	Range, Pasture, Grass	35	41.3

Table 8. Ashland CWSPA - Direct Push Groundwater Sample Results

5.3.4 Evaluation

In this section, shallow and deep soil sampling results were analyzed to assess nitrate-N loading found within the Ashland CWSPA. Shallow soil samples account for spatial variability within the site and deep soil samples account for vertical stratification of nitrate-N below the root zone. The following is a discussion of key findings regarding the shallow and deep soil nitrate-N loading found within the Ashland CWSPA.

Overall nitrate-N trends:

- Of the 12 deep soil sampling locations, six of the deep samples were collected in range, pasture, grass land use sites. The remaining six were categorized as cultivated cropland (corn and soybeans) land use sites, with five dryland sites and one irrigated (corn) site.
- Most of the sites had low variability in results within the vertical soil profile, such as for Sites 011 (ADS011), 012 (ASS012, ADS012), 013 (ADS013), 014 (ASS014 and ADS014), 015 (ASS015 and ADS015), 016 (ASS016 and ADS016), 017A (ADS017A and ASS017), 019 (ASS019, and ADS019), and 020 (ASS020 and ADS020). All these sites are range, pasture, grass, or dryland row crop land use sites.
- Other sites had more variability in results within the soil profile, such as for Sites 011 (ASS011), 017B (ADS017B), Site 018 (ADS018), and 021 (ADS021). All land uses are range, pasture, grass except for Site 17A/B which is split between dryland soybeans and irrigated corn. The sites listed with high variability are discussed individually in the key site-specific observations below.

Key site-specific observations:

- Site 011 (ASS011) is located in range, pasture, grass. Two consecutive intervals (from 6'-12') at shallow soil location, ASS011-01, were elevated. These depth intervals showed elevated nitrate-N levels at 43 lb/ac-ft and 40 lb/ac-ft. In comparison, all nitrate-N samples collected from the remaining soil samples were below background levels and ranged from 4 lb/ac-ft to 7 lb/ac-ft, with overall site average being 7 lb/ac-ft. A site-specific background inventory assessment was conducted for this area to rule out potential point sources for nitrate-N loading. No evidence was found to indicate point source loading.
- Site 017 is the only instance where two deep samples (ADS017A, ADS017B) were collected in addition to 5 shallow samples (ASS017-01 through ASS017-05) collected within the same field which was split between dryland soybeans and irrigated corn landuse at the time of sampling. Deep sample ADS017A and shallow samples ASS017-01 and ASS017-02 were collected on dryland soybeans, while deep sample ADS017B and shallow samples ASS017-03, ASS017-04, and ASS017-05 were collected irrigated corn.
 - Groundwater sampled at both land uses show differing nitrate-N concentrations, where nitrate-N loading on the irrigated corn site is distinctively higher than the dryland soybeans site. Site 017A, dryland soybeans, reached groundwater at 20 ft bgs and a groundwater sample was collected. Groundwater at this location measured 0.31 mg/L nitrate-N. Site 017B, irrigated corn, reached groundwater at 25 ft bgs and a groundwater sample was collected and measured 18.8 mg/L nitrate-N.
 - The deep soil borings at these locations show different vertical nitrate-N profiles. The average nitrate-N for Site 017A, dryland soybeans, is 8 lb/ac-ft and for Site 017B, irrigated corn, is 14 lb/ac-ft. The maximum nitrate-N for Site 017A is 11 lb/ac-ft and for Site 017B is 18 lb/ac-ft both at 0-5' bgs. Nitrate-N was reported higher throughout the boring at 017B than at 017A.
 - Shallow soil borings collected across both land uses indicated below background levels of nitrate-N across the site at 4 lb/ac-ft with the exception of one shallow soil boring. Maximum nitrate-N was recorded in ASS017-05 at both 9-12' and 12-15' bgs at 11 lb/ac-ft. This boring is located within irrigated corn land use which is the same as ADS017B and also reported the highest nitrate-N values for this site.
- Site 018 (ADS018), a deep boring, reported nitrate-N generally at or below background levels except for the first and last interval, 0-5' bgs and 40-45' bgs, which were recorded at 11 lb/ac-ft and 14 lb/ac-ft, respectively. Groundwater sampled at this location was 14.1 mg/L at 45 ft bgs. Moisture was found throughout the boring beyond 20 ft until

groundwater was encountered. This data suggests that the last interval at 45 ft bgs could have been influenced by the nitrate-N in groundwater at this boring. Additionally, a similar trend was observed at Site 020 (ADS020) where the last interval at 30 ft bgs was recorded at 18 lb/ac-ft and the groundwater sample was recorded at 18.1 mg/L while other intervals showed below background concentrations except for the first interval, 0-5' bgs recorded at 14 lb/ac-ft. The land use recorded at both sites was range, pasture, grass.

- The soil results at these intervals are likely impacted by the nitrate-N present in groundwater rather than downward transport of nitrate-N through the profile. This suggests that the nitrate-N concentration in the last soil boring interval at these locations is not the result of vertical leaching of nitrate-N, but horizontal nitrate-N transport through the aquifer. The location of ADS018 and ADS020 are upgradient of the public water supply wells and are within the 10-year zone and 20-year zone of groundwater travel.
- Site 021 (ADS021), a deep boring, reported highly elevated nitrate-N through the soil profile. The average nitrate-N was 27 lb/ac-ft and the maximum nitrate-N was 83 lb/ac-ft at 15-20' bgs. Shallow soil sampling was not performed on this site, therefore spatial variability of nitrate-N in the field is unknown. Land use at this location is range pasture and grass. Groundwater was reached at 35 ft bgs, and a groundwater sample was collected measuring 41.3 mg/L nitrate-N.
 - The highly elevated sample results for Site 021 were unexpected. A review was conducted to assess potential causes for elevated nitrate-N in the soil profile. Site 021 is located on a residential property with proximity to cattle grazing to the north. Historically, the property has been surrounded by pivot irrigated cropland agriculture. Using the NDEE WhAEM Model, Site 021 is located within the 10-20 year groundwater transit zone with groundwater flow directed southeast towards the public supply wells. Additional sampling would be needed to assess the spatial variability of nitrate-N at this site. For the rest of this report, this site is considered as an outlier for this dataset, to avoid skewing the combined results and conclusions.

5.4 QA/QC SAMPLES

Quality assurance and quality control samples were collected throughout the Ashland CWSPA for soil and groundwater samples. QA/QC samples were collected at a 5% ratio of all planned soil samples. Five of the 18 duplicate samples collected reported a difference in nitrate-N concentrations. The greatest percent difference between duplicate and parent sample was 67%. Four sample pairs have this difference. As reference, QA/QC data is considered agreeable up to 50% difference. The percent difference is outside the typical range; however, it is noted that these four sample pairs have very low concentrations and were different by 1 ppm. For the remaining samples, the low percent differences for the paired samples indicate that the soil cores, (deep and shallow) were adequately composited in the field to obtain representative soil samples

of the sampled interval. For the intent and purpose of this study, this data is considered agreeable. Table 9 shows the summary of the QA/QC relationships recorded for soil and groundwater samples.

		Parent Results,	Duplicate	Duplicate Results,	Percent
Matrix	Sample Parent ID	ppm	ID	ppm	Difference
Soil	ASS014-02-06	1	DUP-9	1	0
Soil	ASS017-01-03	1	DUP-10	1	0
Soil	ASS017-05-06	1	DUP-11	1	0
Soil	ASS015-02-09	2	DUP-12	2	0
Soil	ASS019-02-12	1	DUP-13	1	0
Soil	ASS016-05-06	1	DUP-14	1	0
Soil	ASS011-03-03	1	DUP-15	1	0
Soil	ASS020-02-09	1	DUP-16	1	0
Soil	ASS012-01-09	2	DUP-17	1	67
Soil	ASS012-04-09	2	DUP-18	1	67
Soil	ADS021-25	5	DSDUP-1	5	0
Soil	ADS017A-10	2	DSDUP-2	2	0
Soil	ADS019-40	4	DSDUP-3	4	0
Soil	ADS018-10	1	DSDUP-4	2	67
Soil	ADS017B-05	5	DSDUP-5	4	22
Soil	ADS015-10	5	DSDUP-6	5	0
Soil	ADS013-05	2	DSDUP-7	2	0
Soil	ADS012-20	1	DSDUP-18	2	67
Groundwater	AGW015	8.96	GWDUP-1	8.63	4
Groundwater	AGW013	0.53	GWDUP-2	0.52	2

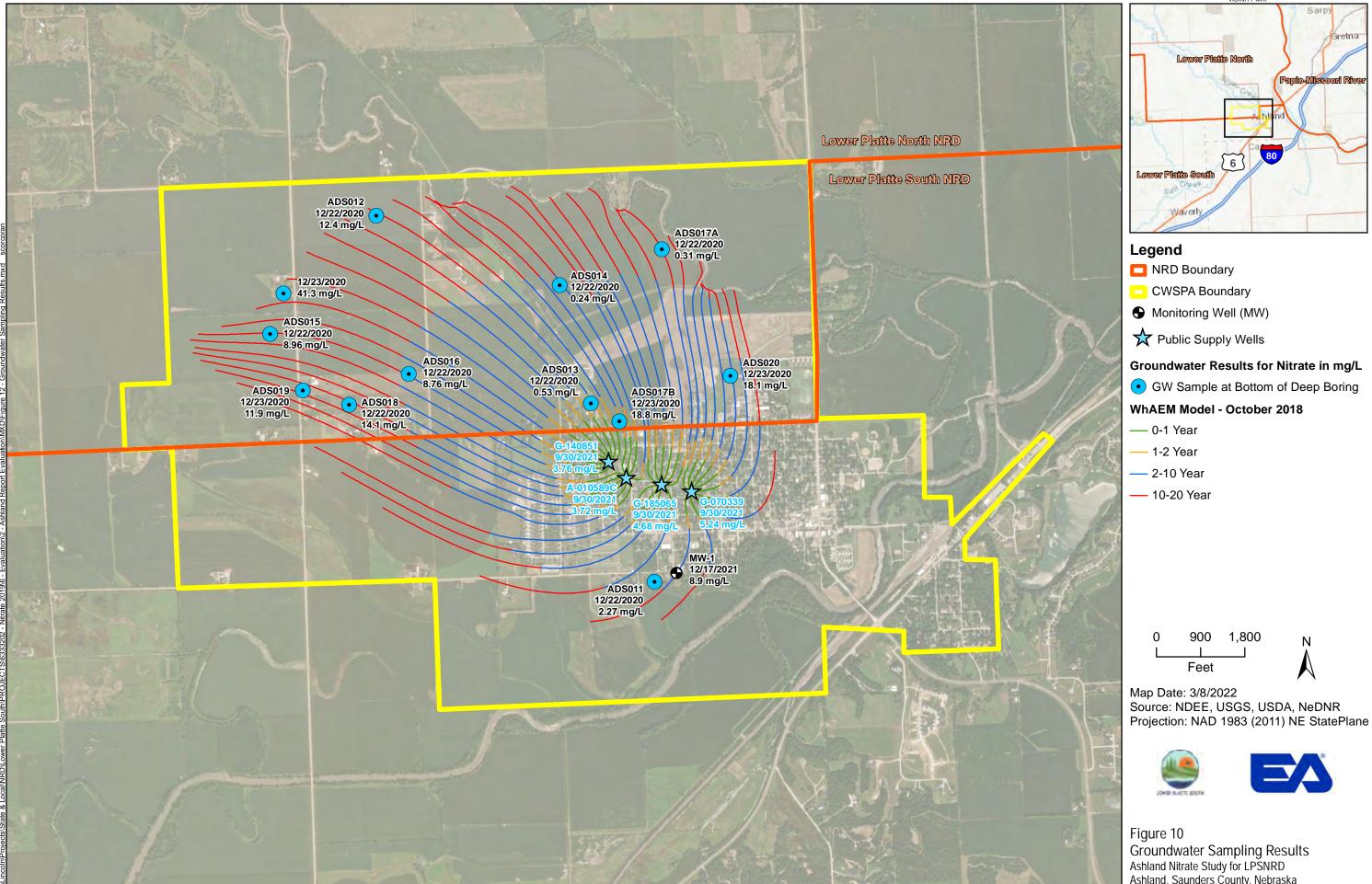
 Table 9.
 QA/QC Sample Percent Differences

5.5 GROUNDWATER MONITORING WELL RESULTS

This section presents the nitrate-N results for groundwater samples collected in the installed monitoring well as part of the Ashland nitrate-N verification study. Figure 10 shows the monitoring well sampling location and concentrations of nitrate-N.

5.5.1 Monitoring Well Groundwater Samples

One groundwater sample was collected by the LPSNRD on December 8, 2021. Monitoring Well 1 (AMW-1) is located south of the public water supply wells on private property. Future monitoring well (AMW-2) is planned to be located west of the public supply wells on Nebraska Department of Transportation land on County Road 6. Future monitoring well (AMW-3) is planned to be located north of the public water supply wells on the Ashland-Greenwood Public School property north of Furnas Street.


The nitrate-N result from AMW-1 well can be found in Table 10 and is shown in Figure 10.

Well ID	Well Name	Sample Date	Nitrate-N mg/L
268120	AMW-1	12/11/2021	8.9

Table 10. Monitoring Well Groundwater Result

A clearer understanding of nitrate-N in the aquifer will be possible when the two future monitoring wells will be installed, and samples will be collected over a longer period to monitor trends.

AMW-1 was installed on the property adjacent to the deep boring location ADS011. The groundwater sample collected from the bottom of boring at ADS011 was reported at 2.97 mg/L nitrate-N and the soil sampling results were below the background level.

Groundwater Sampling Results Ashland Nitrate Study for LPSNRD Ashland, Saunders County, Nebraska

5.6 NITRATE-N AND LAND USE

The current (2020) land use was recorded for each sample location at each site. Nitrate-N loading by land use is presented in Table 11. The table summarizes the number of sites and samples collected for each land use category and the maximum and average nitrate-N results.

Land Use	# of Deep Sites	Deep Soil Maximum Nitrate-N lb/ac-ft	Deep Soil Average Nitrate-N lb/ac-ft	# of Shallow Sites	Shallow Soil Maximum Nitrate-N lb/ac-ft	Shallow Soil Average Nitrate-N lb/ac-ft
Irrigated Corn	1	18	14	1	11	5
Dryland Corn	2	18	9	2	18	7
Dryland Soybeans	3	14	10	3	7	4
Range Pasture Grass*	5	18	6	3	43	6

* The Range Pasture Grass group does not include results for site 21 it was believed to be an outlier in this dataset. Discussion in included in section 5.3.4.

5.6.1 Dryland Corn/Soybeans and Irrigated Corn

Many of the soil average nitrate-N levels are elevated and surpass the 8 lb/ac-ft background nitrate average concentration for soils within cultivated cropland sites. It is generally expected that agriculture management includes crop rotation and planted crops most likely change from year to year. The land use listed in Table 11 is the land use observed during the 2020 field investigation and is a snapshot of land use at the time of sampling.

For the shallow soil sampling, the dryland corn and irrigated corn had higher maximum and average nitrate-N levels than dryland soybeans. This is expected within the root zone due to seasonal impacts of the individual crops but was also exhibited to a lesser extent below the root zone.

One deep sample was collected in an irrigated parcel of land at Site 017, which was split between two management practices with dryland soybeans and irrigated corn. All sampled intervals for irrigated corn up to the depth of 25 ft bgs were elevated except the 15-20' bgs interval which was below background levels. The average nitrate-N in soil samples was 14 lb/ac-ft. The nitrate-N in groundwater at sample Site 017B was 18.8 mg/L.

With elevated levels of nitrate-N present below the root zone in the shallow and deep samples, it is evident that the cropland is contributing as a non-point source to the elevated nitrate-N levels in groundwater within the CWSPA.

5.6.2 Range, Pasture, and Grass

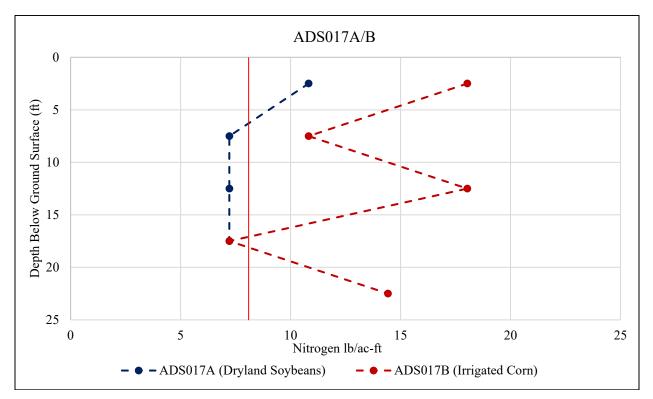
Samples were collected at six locations representing a variety of different grassland managements including range, pasture, or lawn land uses. The land use designation is a broader category to organize maintained and unmaintained lawn, pasture use, and ranges throughout the Ashland CWSPA. The results for Site 021 were considered an outlier and was considered separately. The average nitrate-N concentration for five remaining deep and shallow soil samples are both 6 lb/ac-ft. The maximum nitrate-N concentration in deep soils is 18 lb/ac-ft and in shallow samples is 43 lb/ac-ft. The groundwater samples were collected at the bottom of each deep soil boring. The maximum nitrate-N in groundwater was 18.1 mg/L. Most of the sites reported relatively low nitrate-N results in the deep and shallow borings with very few results above background levels. Sites ADS018 and ADS020 have slightly higher results but the average within deep nitrate-N concentrations were still at background levels (8 lb/ac-ft). This also includes the deepest soils samples results which may have been influenced by groundwater nitrate-N concentrations.

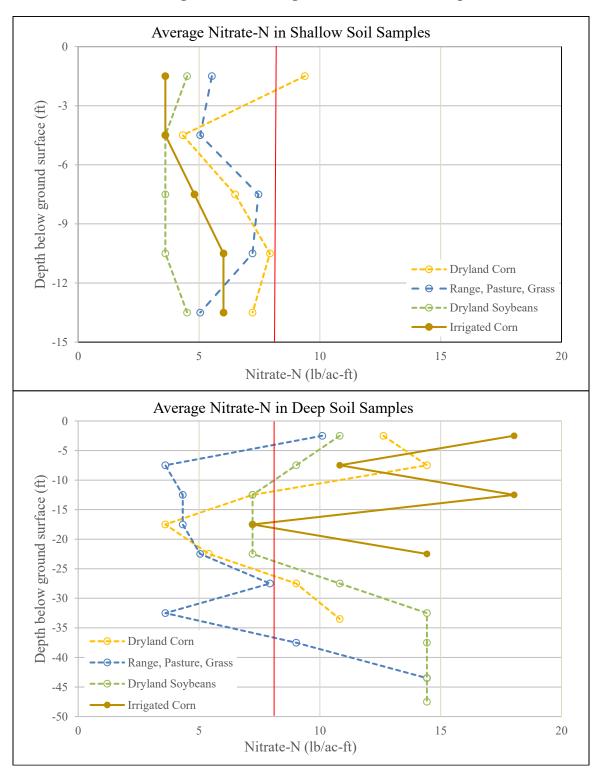
As noted in Section 5.3.4, Site 021 may have had some past uses affecting the site and had unusually high concentrations and is therefore discussed separately. The maximum and average nitrate-N concentrations in deep soils were reported to be 83 lb/ac-ft and 27 lb/ac-ft, respectively. One groundwater sample was collected at the bottom of the deep soil boring, and the nitrate-N in groundwater was 41.3 mg/L.

5.6.3 Nitrate Variability

It is important to note that the results can vary when comparing deep soil nitrate profiles. To evaluate this variability, field data was collected in both shallow and deep borings. The shallow borings collected from a same field often illustrate this variability. For example, the results from site ASS011 (Appendix D) had soil nitrate concentrations below background levels within 4 of the 5 shallow sample locations. However, one of the sample locations had two depths that had highly elevated concentrations of 43 and 40 lb/ac-ft. For the same site, the deep sampling site ADS011 has soil nitrate concentrations below background levels in all depths up to 30 ft.

Another comparison is between two deep borings that were collected in one field with two different land use types, dryland soybeans (ADS017A) and irrigated corn (ADS017B). The nitrate variability within the soil profiles in the pair of samples is presented in Figure 11. As expected, the irrigated corn had higher concentrations; however, concentrations varied throughout the profile.




Figure 11. Variability of Nitrate-N in Deep Profiles in the Same Field

5.6.4 Average Nitrate by Land Use

The shallow soil sampling results were generally low and did not indicate that there was a noticeable difference between land use. The average shallow soil sampling results for each depth by land use is illustrated in Figure 12.

The deep soil sampling results indicated that there are higher average nitrate-N concentrations under sites with crop land uses than sites with range, pasture, and grass land uses, as shown in Figure 12. Site 021 was considered an outlier and not included in averages.

The results indicate that dryland row crops, corn, or soybean sites, had nitrate-N values that were at or exceeded background nitrate-N concentrations and appear to be a non-point source of nitrate loading. At the time of sampling, higher levels of nitrate-N were found in samples collected from dryland corn than from dryland soybeans, but this can be variable from year to year.

6. CONCLUSIONS

6.1 LEACHABLE NITRATE-N IN SOIL

Data gathered from soil samples collected during this investigation provided the following conclusions regarding leachable nitrate-N in shallow and deep soils.

6.1.1 Shallow Soil Samples

For this investigation, 199 shallow soil samples were collected to a depth of 15 ft at 3 ft intervals and analyzed for nitrate-N from 8 sampling sites.

The number of soil samples found to have elevated nitrate-N concentrations was relatively low compared to similar investigations. Across all land use types, a total of 13 of the 119 samples (11%) collected from below the root zone had levels of nitrate-N above background levels. Even though this is comparatively low, the shallow soil sample results still indicate that non-point source leaching of nitrate-N is occurring at locations within the study area.

6.1.2 Deep Soil Samples

For this investigation, 76 deep soil samples were collected at 5 ft intervals from twelve direct push sampling sites. Deep soil samples were collected from dryland row crops, corn and soybeans, irrigated corn, and range, pasture and grass fields. Samples were collected in depths ranging up to 50 ft bgs.

Deep soil sample results clearly show that non-point source leaching of nitrate-N is occurring. The average concentrations below cropland were found to be higher than typical range pasture and grass land uses. A total of 14 of the 30 (47%) samples collected from dryland crops and irrigated corn areas had elevated nitrate-N levels above background levels.

One deep sample location (Site 021) had unexpectedly high results for nitrate-N in the soils and in the groundwater. Additional investigation would be needed to clearly determine if this is due to a point source or non-point source.

6.2 NITRATE-N IN GROUNDWATER

Groundwater samples were collected from direct push borings. Historical nitrate-N data for the City of Ashland municipal wells was available from the NDHHS for the years 2003 to 2021. Groundwater monitoring well sampling results were provided by the LPSNRD.

Direct Push Sampling

Direct push groundwater samples were collected from all twelve locations. Groundwater samples were collected from the maximum depth of the boring, typically ranging from 15ft to 50 ft. Nitrate-N was reported in each of the direct push groundwater samples at concentration ranging from 0.24 mg/L to 41.3 mg/L. The direct push results indicate widespread nitrate-N in shallow groundwater within the Ashland CWSPA.

Municipal Well Sampling

As described in previous sections, the nitrate-N concentrations in one of the municipal wells is slightly increasing, and in recent years, all four wells consistently record nitrate-N at about 50% of the MCL. Only one well reached the MCL of 10 mg/L during 2004 sampling.

Monitoring Well Sampling

One new monitoring well was sampled for the first time in December 2021. Initially, the monitoring well will be sampled on a quarterly basis by the LPSNRD. Two additional monitoring wells are planned for the future. The first groundwater sample collected from the monitoring well reported nitrate-N at 8.9 mg/L. Results from future sampling events from the monitoring wells should be reviewed for trends.

6.3 NITRATE LOADING BY LAND USE

The shallow soil sampling results were generally low and did not indicate that there was a noticeable difference between land use. The deep soil sampling results indicated that there are higher average nitrate-N concentrations under sites with crop land uses than sites with range, pasture, and grass land uses, as shown in Figure 12.

The groundwater results indicated that elevated nitrate-N concentrations are widespread across the CWSPA, regardless of land use. However, several of the range, pasture, grass sites (such as Sites 016, 018 and 020) had nitrate levels below background at nearly all levels throughout the soil profile but had high groundwater nitrate-N results. The same sites often have the highest soil concentration from the deepest soil sampling interval, which is likely impacted by the nitrate-N concentrations in the groundwater. This suggests that these sites are contributing minimal amounts of nitrate-N through vertical leaching, but high nitrate groundwater is moving horizontally below the site.

6.4 SOURCES OF NITRATE-N

These results generally indicate that the source of nitrate-N in groundwater across the CWSPA is likely due to application of commercial fertilizer or manure on cropland. No evidence of point sources such as industrial processes, leakage from an industrial or municipal wastewater site, or large spills were identified within the Ashland CWSPA.

One area that is inconclusive is the area surrounding Site 021. Additional investigation would be needed to determine if the source of nitrate-N is from a point source or from non-point source.

6.5 FUTURE LEACHING POTENTIAL

There is leachable nitrate-N in the soil and subsoil within the Ashland CWSPA and a potential for nitrate-N to be leached every year from the subsoil into the groundwater. Little can be done to prevent the existing nitrate-N from continuing to be transported downward by water draining from the root zone and eventually entering the groundwater system. Changes to management practices have potential to reduce the addition of future nitrate loading to the vadose zone. The

LPSNRD (and LPNNRD) have rules and regulations in place that help mitigate nitrate-N using a stepwise approach (Levels or Phases), with different requirements depending on the Level/Phase designation. Nitrate management practices required by the NRDs are generally focused on the education and training of the producer, fertilizer application requirements, and reporting. Due to the time it takes for nitrogen to migrate through the soil, it often takes years for management practices to substantially affect nitrogen concentrations. Effective nitrogen strategies and monitoring consider the delayed responses between management actions and measurable differences. Future monitoring should consider these delays, with a time series of measurements to determine the effects of chosen management on soil and groundwater levels.

7. REFERENCES

- Divine, D. P. 2015. The Groundwater Atlas of Saunders County, Nebraska, Conservation and Survey Division, University of Nebraska, Resource Atlas.
- EA Engineering, Science, & Technology, Inc., PBC (EA). 2020. Work Plan, Nitrate Studies for Two Community Water Systems, Ashland and Raymond, Nebraska, Lower Platte South Natural Resources District. July. Final.
- Exner, M. E., Hirsh A.J., and Spalding R.F. 2014. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland. *Water Resources. Res.*: 50, 4474–4489, doi:10.1002/2013WR015073.
- Lower Platte South Natural Resources District (LPSNRD). 2020. Ground Water Management Plan. Accessed via World-Wide web at: <u>https://lpsnrd.org/sites/default/files/files/89/ground_water_rrs_2020_final.pdf</u>
- Nebraska Department of Health and Human Services (NDHHS). 2005. *Title 178, Chapter 12, Water Well Construction, Pump Installation, and Water Well Decommissioning Standards*. February.
- NDHHS. 2008. Safe Drinking Water Information System. Accessed via World-Wide web at: http://apps.dhhs.ne.gov
- Scherer, T.F., and Steele, D.D. 2019. Irrigation Scheduling by the Checkbook Method. North Dakota State University. AE792.
- Spalding, R.F., and Exner, M.E. 1993. Occurrence of Nitrate-N in Groundwater A review. Journal of Environmental Quality. 22: 392-402.
- U.S. Environmental Protection Agency (EPA). 2007. Wellhead Analytical Element Model. Accessed via World-Wide web at: http://www.epa.gov

This page intentionally left blank

Appendix A

WhAEM Model Review and Data Sheets

24 January 2020

MEMORANDUM

TO:	Dick Ehrman	LOCATION:	LPSNRD-Lincoln
FROM:	Dale Schlautman	LOCATION:	EA-Lincoln
SUBJECT:	LPSNRD – Nitrate Study for Ashland Review of Existing WhAEM Results	, Nebraska	

EA Project No. 63332.02

PURPOSE

The purpose of this memorandum is to document EA Engineering, Science and Technology PBC's (EA's) review of the existing groundwater models developed by the Nebraska Department of Environment and Energy (NDEE) to estimate the 20-year capture zones for the community well fields. This review is a desktop review limited to the information (model files and supporting information) provided by NDEE .

GENERAL

Model Description

The groundwater models were developed by the NDEE based on readily available information. The model used is the U.S. Environmental Protection Agency's (EPA's) Wellhead Analytic Element Model (WhAEM).

WhAEM is a public domain, ground-water flow model designed to facilitate capture zone delineation and protection area mapping intended to support the State's Wellhead Protection Programs (WHPP) and Source Water Assessment Planning (SWAP) for public water supplies in the United States. WhAEM provides an interactive computer environment for design of protection areas based on radius methods, well in uniform flow solutions, and geohydrologic modeling methods. Geohydrologic modeling for steady pumping wells, including the influence of hydrological boundaries, such as rivers, recharge, and no-flow contacts, is accomplished using the analytic element method.

The newest version of the model (Version 3.3.2) was downloaded from the EPA's website. Copies of the modeling results and limited supporting documentation were obtained from the NDEE for Ashland along with electronic model files. Additional supporting information was also requested from NDEE. EA loaded the electronic files into WhAEM to evaluate the assumptions used to determine the 20-year capture zones.

Model Development

The following are some general observations regarding the development of the model for Ashland.

<u>Boundary/Gradient Conditions</u> – The model allows the use of wells, line sinks, barriers and uniform flow to establish boundary conditions and groundwater gradient. The conditions used for each community were site specific.

Aquifer Thickness – It is unknown how aquifer thickness was determined for this site.

<u>Hydraulic Conductivity (K)</u> – It is unknown how K was determined for this site. NDEE typically uses a custom spreadsheet called a 'K Wizard'. It is assumed that this approach was used by NDEE; however, a K Wizard spreadsheet was not provided by NDEE.

Porosity - It is unknown how porosity was determined for this site.

<u>Calibration</u> – It does not appear that any model calibration procedures were conducted, likely due to the limited information available.

ASHLAND RESULTS

The model was last updated in October 2018 by NDEE.

Key Site-Specific Assumptions

<u>Boundary/Gradient Conditions</u> – Static water levels were established using a constant gradient and static water levels from wells. Flow is controlled mostly by the static water levels from the wells. Water levels in the model generally seemed reasonable when compared to the regional water level map.

Wells – The model was developed based on 4 production wells.

- Well G-14085 (Well 1)
 - Registered capacity = Not provided
 - Model rate = 102.8 gallons per minute (gpm)
- Well G-185065 (Well 2)
 - Registered capacity = Not provided
 - \circ Model rate = 76.1 gpm
- Well A-010589C (Well 3)
 - \circ Registered capacity = 750 gpm
 - \circ Model rate = 82.2 gpm

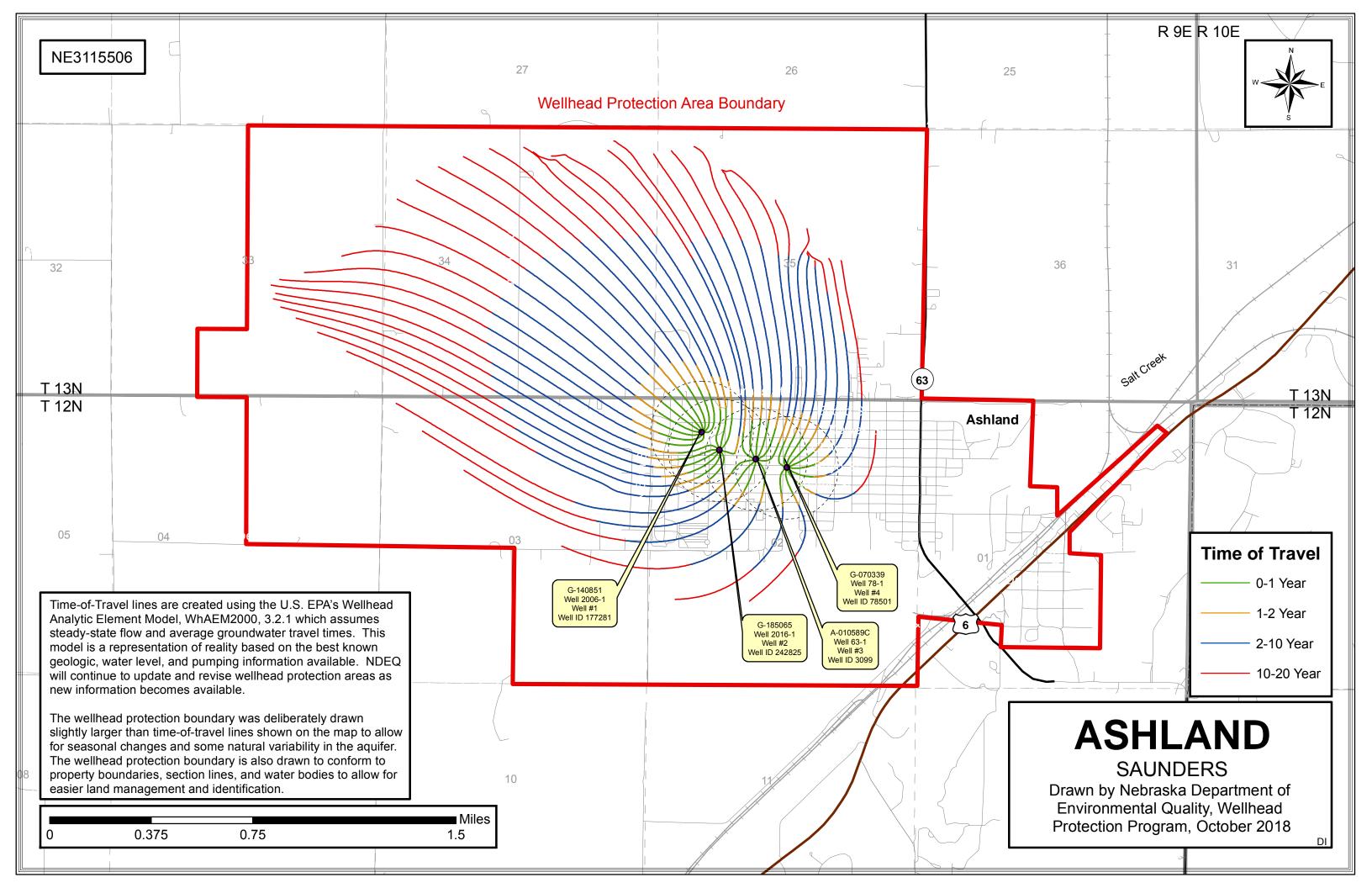
- Well G-070339 (Well 4)
 - \circ Registered capacity = 650 gpm
 - \circ Model rate = 66.6 gpm

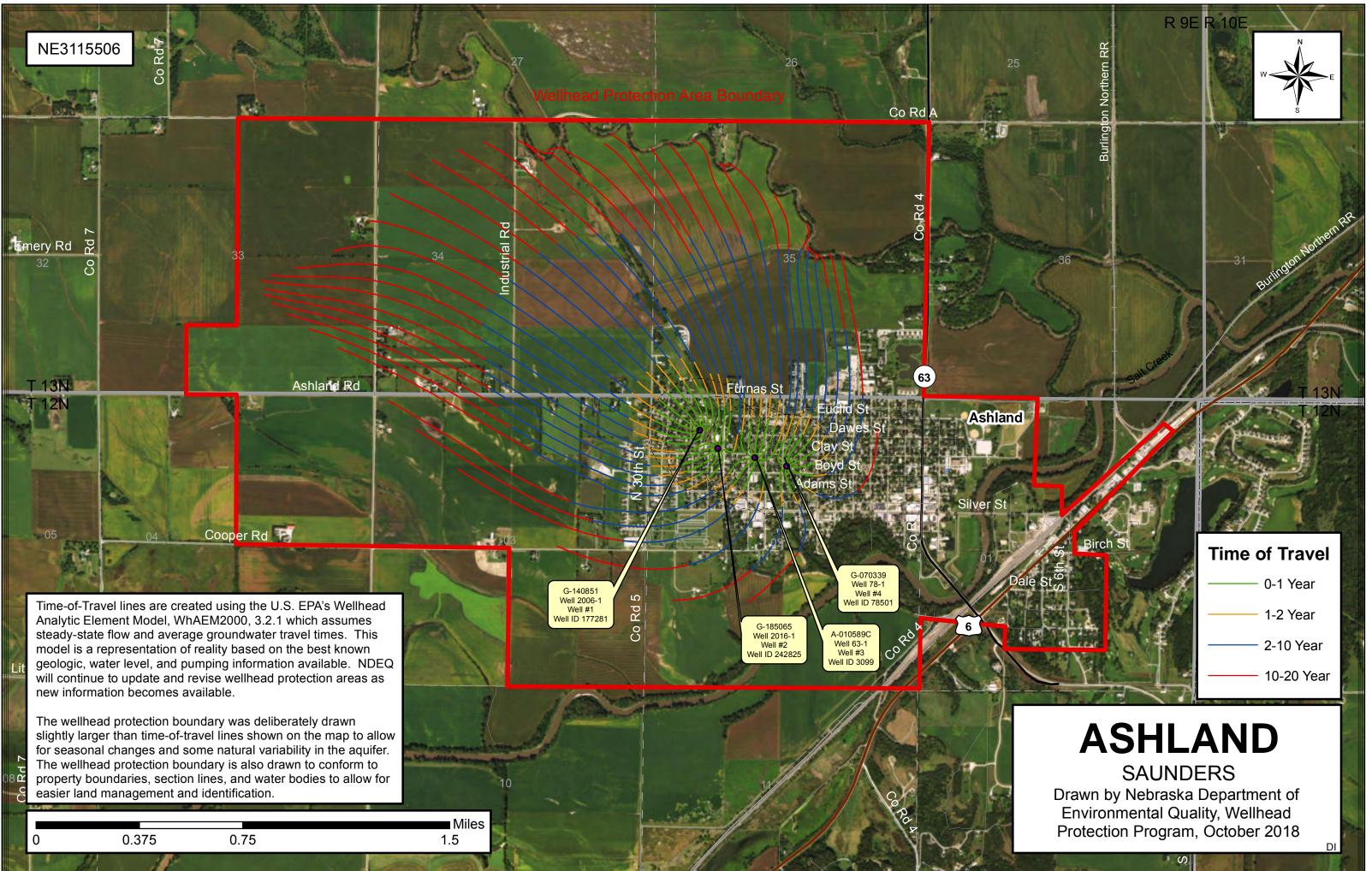
<u>Base of Aquifer Elevation</u> – The model used a base of aquifer elevation of 991 feet. This value appears to be reasonable.

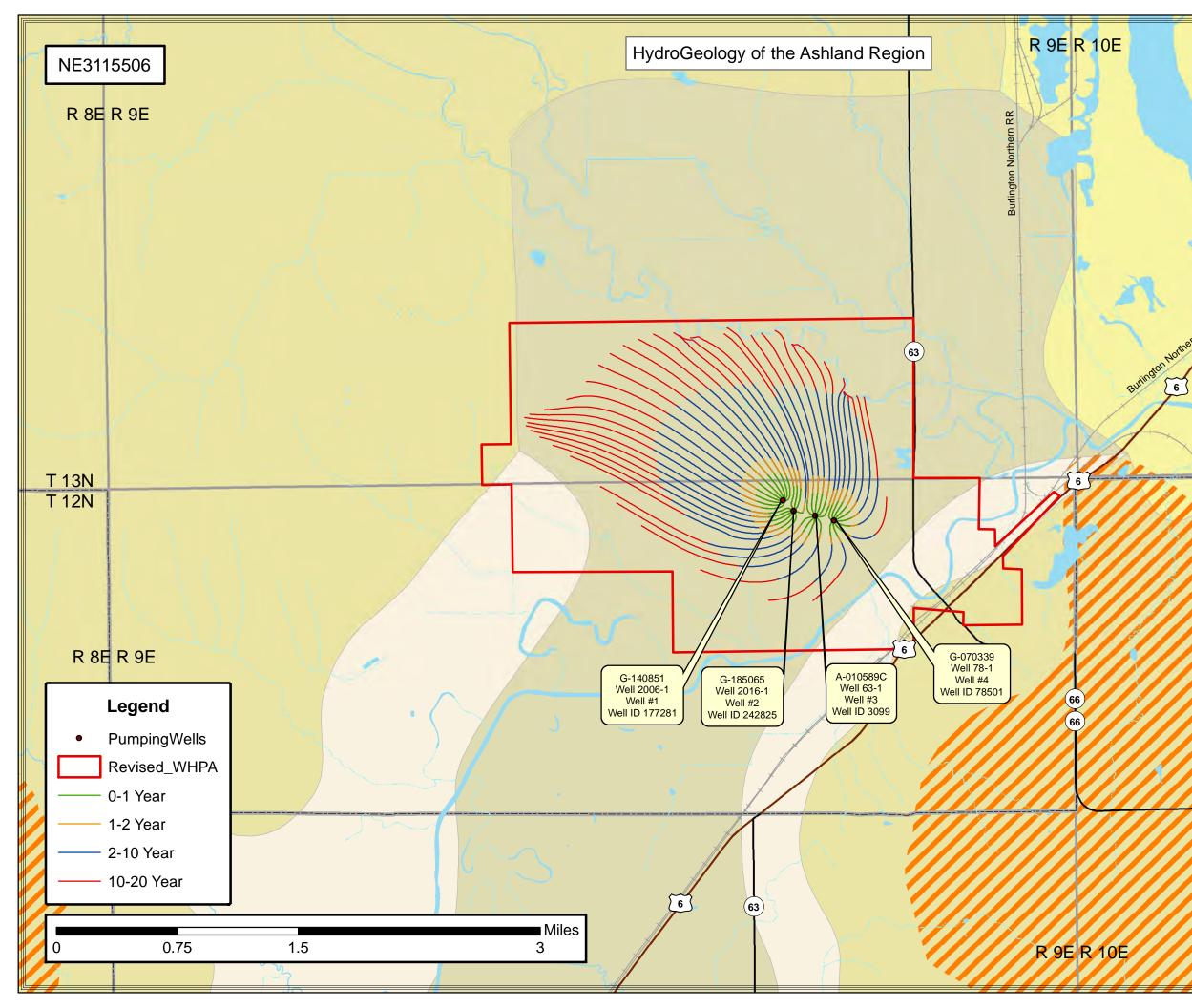
<u>Aquifer Thickness</u> – The model used an aquifer thickness of 31 feet and it is not known how the aquifer thickness was determined. Review of the geologic logs from the well registrations yields sand and gravel deposits of 55 to 99 feet thick. Based on the included information, it is unknown how much of the sand and gravel is saturated, which would be the aquifer thickness. Both estimates of sand and gravel deposit thickness include clay lenses interspersed throughout the sand and gravel layers. Of the well logs provided, many of the wells are screened in 20-35 feet of sand and gravel below a clay lens, which may be the basis of the aquifer thickness used. An expanded aquifer thickness could affect the particle flow tracking direction and width.

<u>Hydraulic Conductivity (K)</u> – The model used a K of 109.7 feet/day for the aquifer and it is not known how the K value was determined. According to Table 3.1 of Groundwater Hydrology (Todd, 1980), representative K values are 9 feet/day for fine sand to 148 feet/day for coarse sand. Therefore, the K value of 109.7 feet/day appears to be reasonable.

<u>Porosity</u> – The model used a porosity of 0.20 for the aquifer. This is considered a low value for porosity. According to Advanced Soil Mechanics (Das 2008), porosity in coarse sand ranges from 0.26 to 0.43, but utilizing a lower porosity value generates a more conservative estimate of the wellhead protection area by lengthening the capture zone.


Conclusions


Based on this review the following conclusions are presented:


- Most of the assumptions used to determine the 20-year capture zone appear to be reasonable. While porosity seems to be low, it yields a more conservative capture zone analysis.
- The aquifer thickness may be relatively low. It is unlikely that updating this parameter would yield a significantly different result, however, NDEE may choose to modify this parameter with updated information.

If you have any questions or require additional information, please do not hesitate to contact me at 402-476-3766.

DS/dm

Geology

Burlington Northern RR

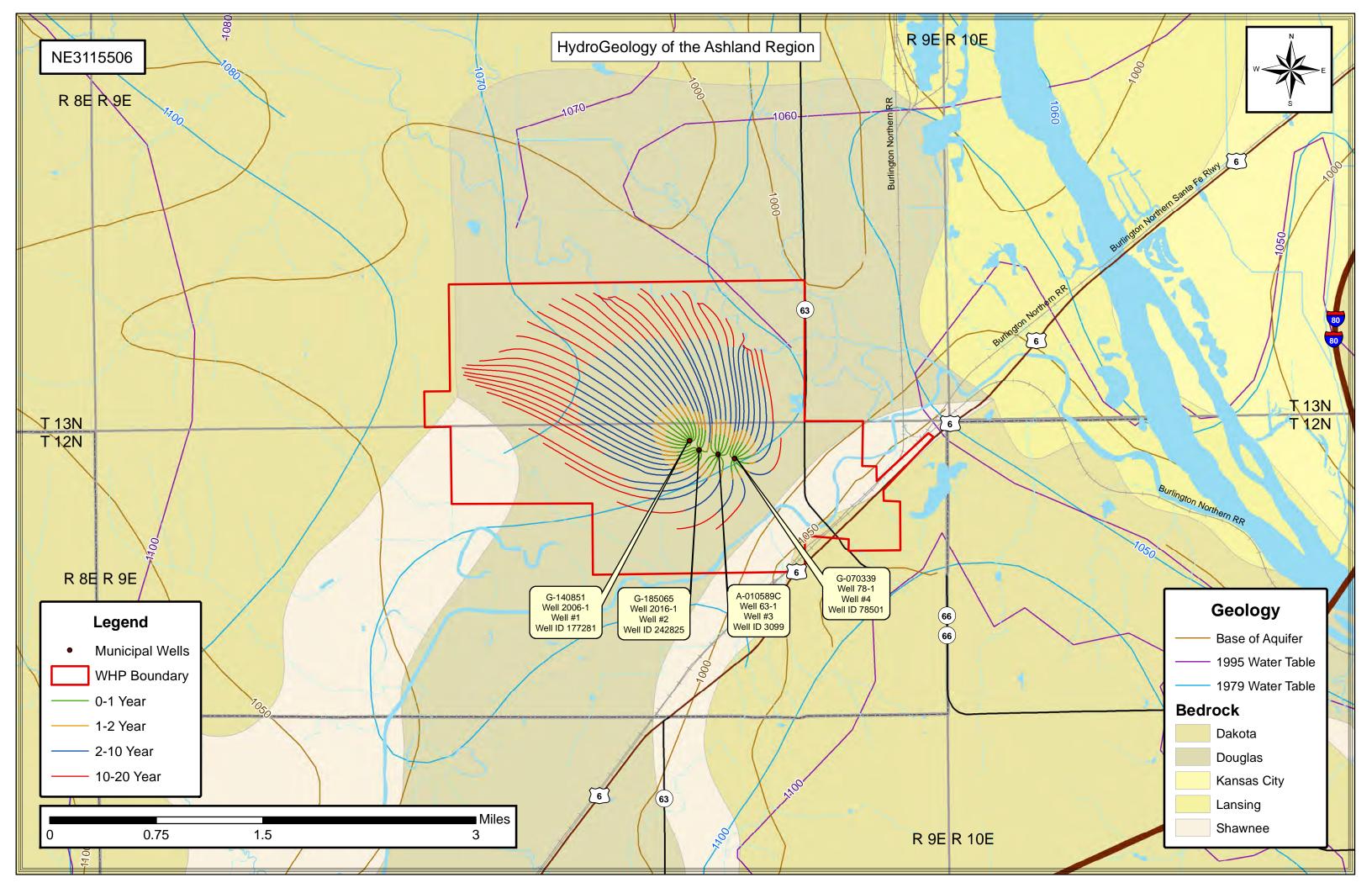
Santa Fe RINY 6

Principle Aquifer Absent

Glacial Till

Glacial till < 50 ft.

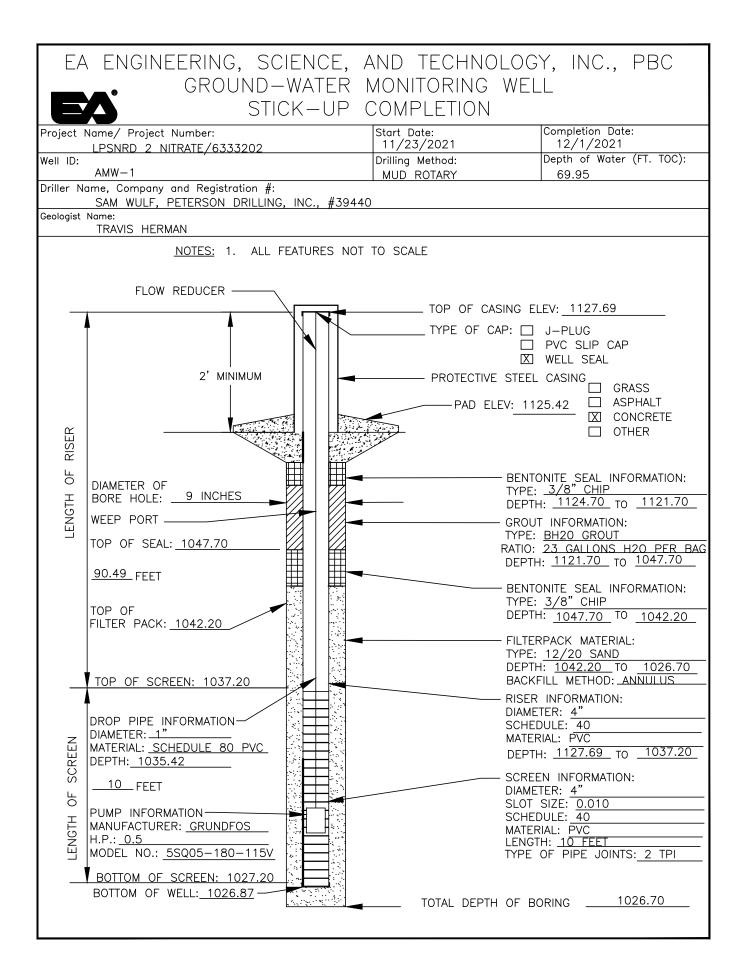
Glacial till > 150 ft.


Bedrock

Dakota

Douglas

Kansas City Lansing


Shawnee

This page intentionally left blank

Appendix B

Monitoring Well Construction Forms and Boring Logs

						~~ <i>t</i>				UKING	200
PROJ			2 Commur		BORING DEPTH:	98 ft	BORING N		AMW-1		
	OJECT		6333202		SURFACE ELEV:	1,125.42	DATE DRIL			3/2021	
	ING CO.		eterson Dri	lling	NORTHING:	2638753.346	BORING M		Mue	d Rotary	
DRILL			am Wulf		EASTING:	459332.6256	TYPE OF S	URFACE:		Grass	
GEOL	OGIST:	Tr	avis Herma	n	DEPTH TO WATER:	69.95 ft from TOC					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
. ,	. ,		10YR 3/4	OL		r, grass, sandy silt,	Grab	. ,	0		
_						wn, 10-20% vf sand,			-		
						n plasticity, roots					
_						i placiony, rooto					
-											
_											
	1100.1										
5	1120.4					and the second second					
_			10YR 5/4	SP		rown, vf to medium,	Grab		0		
						ngular, nonplastic,					
_					trace of black	medium grains					
_											
_											
10	1115.4										
			10YR 5/4	SP	Same a	s previous	Grab		0		
15	1110.4										
			10YR 5/4	SP	Same a	s previous	Grab		0		
_				-		•			-		
20	1105.4										
20	1103.4		10YR 5/4	SP	Samo a	s previous	Grab		0		
			1011 5/4	35	Same a	s previous	Giab		U		
25	1100.4										

PROJI	CT.		2 Commun		BORING DEPTH:	98 ft	BORING NO	.	AMW-1	JKING	
	OJECT:		6333202		SURFACE ELEV:	98 π 1,125.42				3/2021	
	ING CO.		eterson Dri		NORTHING:	2638753.346	DATE DRIL BORING M			d Rotary	
			am Wulf	iiiriy	EASTING:	459332.6256	TYPE OF S		IVIU	Grass	
	ER: OGIST:			n	DEPTH TO WATER:			UNFAUE:		01055	
			avis Herma		DEFINITO WATER:	09.90 IL IIOM TOC			0/ DE	D .	
DEP.		WELL CONST.		USCS CODE		DESCRIPTION	SAMPLE METHOD		% RE- COVERY	Blow Count	LAB DATA
(FT)	(FT)	CONST.	COLOR			DESCRIPTION		(IN.)		Count	DATA
_			10YR 5/4	SP	Same	as previous	Grab		0		
-											
-											
-											
-											
-											
30	1095.4										
			10YR 5/4	SP	Same a	as previous	Grab		0		
-											
35	1090.4										
			10YR 5/4	SP	Same a	as previous	Grab		0		
-									-		
40 -	1085.4										
40	1000.4		10YR 5/4	SP	Same as previo	us, mostly rounded	Grab		0		
$ $			10111 3/4	0		ine grains	Giab		0		
-					vory						
$ \neg$											
45	1080.4								c .		
			10YR 5/4	SW		se, yellowish brown,	Grab		0		
						d fine gravel, rounded ular, nonplastic					
$ $					to sub-ang	แล้า, ทั่งที่มีเลอแบ					
-											
$ $											
$ \neg$											
50	1075.4				<u> </u>						

							-		URING	
PROJI			2 Commur		BORING DEPTH: 98 ft	BORING N		AMW-1		
	OJECT		6333202		SURFACE ELEV: 1,125.42	DATE DRIL			3/2021	
	ING CO.		eterson Dri	lling	NORTHING: 2638753.346	BORING M		Mu	d Rotary	
DRILL			am Wulf		EASTING: 459332.6256	TYPE OF S	URFACE:		Grass	
GEOL	OGIST:	Tra	avis Herma	n	DEPTH TO WATER: 69.95 ft from TOC					
DEP.	ELEV	WELL		USCS		SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR 5/4	SW	Same as previous	Grab		0		
55	1070.4									
			10YR 5/4	SW	Same as previous	Grab		0		
_										
60	1065.4									
			10YR 5/4	SW	Same as previous	Grab		0		
65	1060.4									
			10YR 5/4	SW	Same as previous	Grab		0		
70	1055.4									
			10YR 6/4	SP	Sand, very fine grain, light yellowish brown,	Grab		0		
					rounded, trace coarse sand, trace					
					black medium sub-angular grains					
75	1050.4									

	-07					~~ <i>'</i>				URING	200
PROJ			2 Commu			98 ft	BORING N		AMW-1	- /	
	OJECT		6333202		SURFACE ELEV:	1,125.42	DATE DRIL			3/2021	
	ING CO.		eterson Dri	lling	NORTHING:	2638753.346	BORING M		Mu	d Rotary	
DRILL			am Wulf		EASTING:	459332.6256	TYPE OF S	URFACE:		Grass	
GEOL	OGIST:		avis Herma		DEPTH TO WATER:	69.95 ft from TOC					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR 6/4	SP	Same a	s previous	Grab				
]											
80	1045.4										
			10YR 6/4	SP		mostly medium grain,	Grab				
					rounded to	o sub-angular					
-											
-											
-											
-											
85	1040.4	····									
	1070.4		10YR 6/4	SP	Same a	s previous	Grab				
-			10111 0/4	0	Game a		Siab				
-		· · · · · ·									
$ $		····									
-											
-											
$ \neg$		/									
90	1035.4										
			10YR 6/4	SP	Same as previo	us, trace of coarse	Grab				
					angular l	black grains					
95	1030.4										
			10YR 6/4	SP	Same a	s previous	Grab				
						sands/fine gravels,					
						nts (reacts with HCL),					
		$\cdots Y \land \cdots$			trace b	lack clay					
						୩ 0 <u>୧'</u> bac	4				
-						⊉ 98' bgs rval: 87.5' - 97.5'					
-						ected from concrete well	l nad				
100	1025.4					er elevation from surface					
100	1020.4				mulcales groundwal	er elevation nom suitace	,				

								-		ORING	200
PROJ			- 2 Commu		BORING DEPTH:	30 ft			ADS		
	OJECT		6333202		SURFACE ELEV:	1,088.00	DATE DRIL			7/2020	
	ING CO.		ns Environi	mental	NORTHING:	4546114.00	BORING M			DPT	
DRILL			ason A.		EASTING:	720172.10	TYPE OF S	URFACE:	Grass /	Cattle Pas	sture
	OGIST:		Travis H.		DEPTH TO WATER:	27 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC I	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR3/1	ML		y, dry, root traces, / fine sand	DPT	60	100		
5	1083.0		10YR3/3	ML		wn, dry, root traces,	DPT	60	100		
- - - - - - -	1078.0		10YR7/3	SP	Sand, very pale b	rown, dry to moist, and grains					
	1078.0				very line s	and grains	DPT	60	100		
15	1073.0				Same as	; previous	DPT	60	100		
20	1068.0				Same as	s previous	DPT	60	100		
25	1063.0										

			-		, INC., PBC					ORING	LUG
PROJ			- 2 Commu		BORING DEPTH:	30 ft	BORING N		ADS		
	OJECT		6333202		SURFACE ELEV:	1,088.00	DATE DRIL			7/2020	
	ING CO.		ns Environi	mental	NORTHING:	4546114.00	BORING M			DPT	
DRILL			ason A.		EASTING:	720172.10	TYPE OF S	URFACE:	Grass /	Cattle Pas	sture
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	27 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as pre	vious, saturated	DPT	60	100		
30	1058.0										
					Bottom of H	lole @ 30 feet			0		
35	1053.0										
									0		
40	1048.0										
									0		
4F -	1040.0										
45	1043.0										
-									0		
-											
-											
-											
	1000.0										
50	1038.0										

_					, INC., PBC					ORING	200
PROJI			- 2 Commu		BORING DEPTH:	30 ft	BORING N		ADS		
	OJECT	-	6333202		SURFACE ELEV:	1,095.00	DATE DRIL			3/2020	
	ING CO.	-	ns Environi	mental	NORTHING:	4548411.47	BORING M			DPT	
DRILL			ason A.		EASTING:	718469.72	TYPE OF S	URFACE:	C	orn Field	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	26 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR			DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR4/4	ML		i brown, med to high dry to moist	DPT	36	60		
5	1090.0		10YR4/4	ML		llowish brown, low to s, moist to wet	DPT	48	80		
	1085.0				Same a	s previous	DPT	60	100		
 15	1080.0		10YR7/2	SP		low to med density, to med sand grains	DPT	60	100		
	1075.0					us, very fine to fine I grains	DPT	60	100		
25	1070.0										

								-		ORING	200
PROJ		LPSNRD			BORING DEPTH:	30 ft	BORING N		ADS		
	OJECT		6333202		SURFACE ELEV:	1,095.00	DATE DRIL			3/2020	
	ING CO.		ns Environi	mental	NORTHING:	4548411.47	BORING M			DPT	
DRILL			ason A.		EASTING:	718469.72	TYPE OF S	URFACE:	C	orn Field	
	OGIST:		Travis H.		DEPTH TO WATER:	26 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as previo	us, wet to saturated	DPT	60	100		
$ _$											
30	1065.0										
					Bottom of I	Hole @ 30 feet			0		
I —											
-											
—											
-											
-											
35	1060.0										
									0		
-									J		
-											
_1											
40	1055.0										
									0		
45	1050.0										
45	1050.0								0		
-									0		
-											
-											
-											
-											
-											
50	1045.0										

					, IIIC., FBC			-		URING	200
PROJ			- 2 Commu		BORING DEPTH:	35 ft	BORING N		ADS		
	OJECT		6333202		SURFACE ELEV:	1,093.00	DATE DRIL			/2020	
	ING CO.		ns Environi	mental		19766.48	BORING M			DPT	
DRILL			ason A.			47229.64	TYPE OF S	URFACE:	Pasture	/ Brome g	rass
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	28 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DES	SCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR3/3	ML	Silt loam, dark brown, me moist, root f	-	DPT	60	100		
 5	1088.0										
				0			DPT	60	100		
			10YR4/4	CL	Silty clay, dark yellowis med stiffness						
	1083.0				Same as pro	evious	DPT	60	100		
15 	1078.0		10YR6/2	SP	Sand, light brownish g density, moist to wet, sand gra	very fine to fine	DPT	60	100		
20	1073.0				Same as previous, ver sand gra	•	DPT	60	100		
25	1068.0										

<u> </u>					, INC., PBC					ORING	200
PROJ			- 2 Commu		BORING DEPTH:	35 ft	BORING N		ADS		
	OJECT		6333202		SURFACE ELEV:	1,093.00	DATE DRIL			9/2020	
	ING CO.		ns Environi	mental	NORTHING:	719766.48	BORING M			DPT	
DRILL			ason A.		EASTING:	4547229.64	TYPE OF S	URFACE:	Pasture	e / Brome g	rass
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	28 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR6/3		Same as previ	ous, pale brown,	DPT	60	100		
					wet to satur	rated at depth					
30	1063.0										
					Same as prev	vious, saturated	DPT	60	100		
-											
-											
35	1058.0										
					Bottom of H	lole @ 35 feet			0		
									_		
40	1053.0										
									0		
-											
-											
-											
-											
-											
45	1048.0										
									0		
1											
50	1043.0										

			-		, Inc., PBC					ORING	200
PROJ			- 2 Commu		BORING DEPTH: 15 ft		BORING N		ADS		
	OJECT		6333202		SURFACE ELEV: 1,072.00)	DATE DRIL			7/2020	
	ING CO.		ns Environ	mental	NORTHING: 4548023.59		BORING M			DPT	
DRILL			ason A.		EASTING: 719520.08		TYPE OF S	URFACE:	Soy	/bean Field	ł
	OGIST:		Travis H.		DEPTH TO WATER: 11 ft						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTION		METHOD	(IN.)	COVERY	Count	DATA
_			10YR2/1	ML	Silt loam, black, low to med stiffn	ess,	DPT	60	100		
					moist, root traces						
_											
			40)/05/0	5.41	Sandy silt, brown, low to mee	J	-				
_			10YR5/3	ML	stiffness, moist, very fine sand gr						
					stimess, moist, very line sand gi	ans					
-			10YR2/1	ML	Silt loam, black, medium stiffness,	moist					
			1011(2)1		trace very fine sand grains						
5	1067.0										
							DPT	60	100		
_											
			10YR5/1	ML	Silt loam, gray, low to med stiffne	ess,					
_					moist						
	1000.0										
10	1062.0						DDT	<u> </u>	400		
							DPT	60	100		
_											
			10YR2/2	CL	Silty clay, very dark brown, med to	b high					
					stiffness, saturated	•					
15	1057.0										
					Bottom of Hole @ 15 feet				0		
-											
20	1052.0										
									0		
									Ŭ		
25	1047.0										

_					, INC., PBC					ORING	LUU
PROJ			- 2 Commı		BORING DEPTH:	35 ft	BORING NO		ADS		
	OJECT	-	6333202		SURFACE ELEV:	1,107.00	DATE DRIL			9/2020	
	ING CO.		ns Environ	mental	NORTHING:	4547674.76	BORING M			DPT	
DRILL			ason A.		EASTING:	717720.95	TYPE OF S	URFACE:	C	orn Field	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	33 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR4/3	ML		ned to high stiffness, root traces	DPT	60	100		
5	1102.0				Same as previous	, low to med stiffness	DPT	60	100		
10	1097.0						DPT	60	100		
			10YR7/3	SP	density, moist	brown, med to high , very fine to fine d grains					
15	1092.0					ine to med sand grains depth	DPT	60	100		
20	1087.0				Same a	is previous	DPT	60	100		
25	1082.0										

			-		, INC., РВС					ORING	200
PROJE			- 2 Commu		BORING DEPTH:	35 ft	BORING N		ADS		
	OJECT		6333202		SURFACE ELEV:	1,107.00	DATE DRIL			9/2020	
	ING CO.		ns Environi	mental	NORTHING:	4547674.76	BORING M			DPT	
DRILL			ason A.		EASTING:	717720.95	TYPE OF S	URFACE:	C	orn Field	
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	33 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC I	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as	s previous	DPT	60	100		
30	1077.0										
					Same as previous	s, wet to saturated	DPT	60	100		
					at d	lepth					
35	1072.0										
					Bottom of H	ole @ 35 feet			0		
_											
_											
_											
40	1067.0										
40	1007.0								0		
-									0		
45	1062.0										
									0		
50	1057.0										

_	_			= -	ties BORING DEPTH: 30 ft				ADS016			
PROJE			- 2 Commu				BORING N					
	OJECT	-	6333202		SURFACE ELEV:	1,100.00	DATE DRIL			3/2020		
	ING CO.		ns Environi	mental		4547356.95	BORING M			DPT -		
DRILL			ason A.		EASTING:	718613.39	TYPE OF S	URFACE:	Hor	se Pasture	;	
	OGIST:		Travis H.		DEPTH TO WATER:	28 ft						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR			DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
			10YR5/4	ML		med to high stiffness, t, root traces	DPT	60	100			
5	1095.0				Same as previous,	low to med stiffness	DPT	60	100			
-												
-			10YR7/3	SP	Sand, very pale brow	n, low to med density,	-					
10	1090.0					y fine sand grains	DPT	60	100			
15	1085.0				Come of		DDT	60	100			
					Same as	s previous	DPT	60	100			
20	1080.0				· · ·			0.7				
					Same as previous,	med to high density	DPT	60	100			
25	1075.0											

PROJECT: LPSNRD - 2 Communities					BORING NO.: ADS016		200				
					BORING DEPTH:	30 ft					
	OJECT		6333202		SURFACE ELEV:	1,100.00	DATE DRIL			3/2020	
	ING CO.		ns Environi	mental		4547356.95	BORING M			DPT	
DRILL			ason A.			18613.39	TYPE OF S	URFACE:	Hor	se Pasture	•
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	28 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DE	SCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as previous, v fine to med sa	wet to saturated,	DPT	60	100		
30	1070.0										
<u> </u>					Bottom of Hole	e @ 30 feet	1		0		
					Bottom of Hole	9 @ 30 feet			0		
35	1065.0										
									0		
40	1060.0								0		
45	1055.0								0		
 50	1050.0										

			PSNRD - 2 Communities BORING DEPTH: 20 ft				BORING LOG				
PROJI	-						BORING N		ADSC		
	OJECT	-	6333202		SURFACE ELEV:	1,070.00	DATE DRIL			7/2020	
	ING CO.	-	ns Environi	mental	NORTHING:	4548256.04	BORING M			DPT	
DRILL	-		ason A.		EASTING:	720096.81	TYPE OF S	URFACE:	Soy	/bean Field	k
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	11 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR2/2	ML		rk brown, med to high nist, root traces	DPT	60	100		
5	1065.0		10YR4/1	ML		ν, low to med stiffness, ne sand grains					
			10YR2/2	ML		rk brown, low to med race very fine sand	DPT	60	100		
 10 	1060.0				Same a	s previous	DPT	60	100		
	1055.0					ous, med to high , saturated	DPT	60	100		
20	1050.0				Bottom of H	lole @ 20 feet			0		
 _25	1045.0										

					BORING NO.: ADS017B						
						25 ft					
						1,082.00	DATE DRIL			3/2020	
	NG CO.		ns Environi	mental		4547378.83	BORING M			DPT	
	-		ason A.			720138.56	TYPE OF S	URFACE:		orn Field	
GEOLO			Travis H.		DEPTH TO WATER:	22 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.		CODE		DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR2/1	ML		to high stiffness,	DPT	60	100		
					dry to	o moist					
			101/00/0								
			10YR2/2	ML		y dark brown, med to					
					nign stiffr	ness, moist					
	1077.0										
5	1077.0		10YR4/4	CL	Silty clay, dark vellowish brown, med		DPT	60	100		
			101 K4/4	0L	Silty clay, dark yellowish brown, med to high stiffness, moist, trace of		DPT	00	100		
					-	ne sand					
					Very II						
10	1072.0										
					Same as previous,	low to med stiffness,	DPT	60	100		
					moist	to wet					
					-		_				
15	1067.0		10YR4/3	SP		o med density, wet,					
					very fine to fi	ne sand grains	DPT	60	100		
-											
-											
-											
-			10YR7/2		Same as previous	, light gray, med to					
20	1062.0		10111/2			density					
<u> </u>					gri		DPT	60	100		
-							511		100		
-											
1					Same as previous	s, fine to med sand					
25	1057.0				grains, saturated						

PROJECT: LPSNRD - 2 Communities EA PROJECT #: 6333202						200						
					BORING DEPTH:	25 ft						
			6333202		SURFACE ELEV:	1,082.00	DATE DRIL					
	ING CO.		ns Environi	mental	NORTHING:	4547378.83	BORING M					
DRILL			ason A.		EASTING:	720138.56	TYPE OF S	URFACE:	C	orn Field		
	OGIST:		Travis H.		DEPTH TO WATER:	22 ft						
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-		LAB	
(FT)	(FT)	CONST.	COLOR	CODE		DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
					Bottom of H	lole @ 25 feet			0			
]												
]												
	1050 0											
30	1052.0								<u>^</u>			
-									U			
-												
-												
-												
-												
-												
35	1047.0											
									0			
1												
$ \Box$												
40	1042.0											
									0			
-												
-												
-												
-												
-												
45	1037.0											
									0			
$ \neg$												
1												
_												
50	1032.0											

-	JECT: LPSNRD - 2 Communities BORING DEPTH: 45 ft						_		URING	200	
							BORING NO		ADS		
	OJECT		6333202		SURFACE ELEV:	1,115.00	DATE DRIL			3/2020	
	ING CO.		ns Environi	mental		547238.46	BORING M			DPT	
DRILL			ason A.			8202.17	TYPE OF S	URFACE:	Maintain	ed brome	grass
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	42 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DES	CRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR6/4		Silt, light yellowish bro		DPT	60	100		
_					stiffness, dry/friable						
_											
5	1110.0										
					Same as previous		DPT	60	100		
					Same as previous		2				
10	1105.0										
					Same as pre	evious	DPT	60	100		
			10YR6/2	SP	Sand, light brownish g	ray, low to med					
					density, dry to moist, ver	-					
						, 0					
15	1100.0										
					Same as previous, mo	bist, very fine to	DPT	60	100		
					fine sand g	-					
					3						
-											
-											
-											
20	1095.0										
					Same as previous,	moist to wet	DPT	60	100		
-					,,						
-											
1 -											
-											
25	1090.0										
<u> </u>				l.							

							LUU				
	OJECT	-	6333202		SURFACE ELEV:	1,115.00	DATE DRIL			3/2020	
	ING CO.		ns Environi	mental	NORTHING:	4547238.46	BORING M			DPT	
DRILL			ason A.		EASTING:	718202.17	TYPE OF S	URFACE:	Maintain	ed brome	grass
GEOL	OGIST:		Travis H.		DEPTH TO WATER:	42 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
					Same as	s previous	DPT	60	100		
30	1085.0										
						, med to high densty,	DPT	60	100		
					very fine	sand grains					
-											
35	1080.0										
35	1060.0				Same as previo	us, some medium	DPT	60	100		
-						grains	DET	00	100		
					3414	granis					
-											
-											
-											
40	1075.0										
					Same as previou	is, wet to saturated	DPT	60	100		
					-						
45	1070.0										
					Bottom of H	lole @ 45 feet			0		
-											
50 -	1065.0										
50	0.6001				l						

						BORING NO.: ADS019				200	
PROJE											
	OJECT		6333202			1,110.00	DATE DRIL			3/2020	
	ING CO.		ns Environi	mental		4547316.96	BORING M			DPT	
DRILL			ason A.			717886.38	TYPE OF S	URFACE:	Soy	/bean Field	1
	OGIST:		Travis H.		DEPTH TO WATER:	38 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE		DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
_			10YR3/2	ML		yish brown, med to	DPT	60	100		
					nign stiffness, dry	to moist, root traces					
_											
-											
_											
5	1105.0										
							DPT	60	100		
			10YR4/3	ML	Clayey silt, brown,	low to med stiffness,					
					moist	t to wet					
_											
10	1100.0										
_					Same as	s previous	DPT	60	100		
_											
_											
15	1095.0										
					Same as	s previous	DPT	60	100		
			10YR7/3	SP		vn, low to med density,					
					moist to wet, ver	ry fine sand grains					
20	1090.0										
_							DPT	60	100		
			10YR6/2	SP	Sand light browning	sh aray mod to high					
			101 Kb/2	32		sh gray, med to high					
					density, moist, very f	ine to fine sand grains					
-											
25	1085.0										
					1						

PROJECT: LPSNRD - 2 Communities EA PROJECT #: 6333202							-	ADS019			
						BORING N					
			6333202		SURFACE ELEV: 1,110.00	DATE DRIL			3/2020		
	ING CO.		ns Environi	mental	NORTHING: 4547316.96	BORING M			DPT		
DRILL			ason A.		EASTING: 717886.38	TYPE OF S	URFACE:	Soy	/bean Field	ł	
	OGIST:		Travis H.		DEPTH TO WATER: 38 ft			1			
DEP.	ELEV	WELL		USCS		SAMPLE	LENGTH	% RE-	Blow	LAB	
(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA	
					Same as previous	DPT	60	100			
_											
						_					
_			10YR4/2	CL	Clay, dark grayish brown, low to med						
					stiffness, moist to wet						
_											
30 -	1000.0										
30	1080.0				Some as providual low to mod stiffness	DDT	60	100			
_					Same as previous, low to med stiffness, wet	DPT	60	100			
					wei						
_											
_											
_											
35	1075.0										
					Same as previous	DPT	60	100			
_											
40	1070.0										
					Same as previous	DPT	60	100			
					Increases to med to high						
					stiffness, moist						
				00	Clavey and vollowish brown mod to high	-					
	1065.0		10YR5/4	SP	Clayey sand, yellowish brown, med to high						
45	0.0001				density, wet to saturated		60	100			
-			10YR6/3	SP	Sand, pale brown, med to high density,	DPT	60	100			
			10116/3	32	saturated, very fine to fine sand grains,						
					iron staining						
-					non stanning						
-											
-											
50	1060.0										
					1						

					F0 (1		-			200	
PROJ					BORING DEPTH:	50 ft	BORING N		ADS		
	OJECT		6333202			1,110.00	DATE DRIL			3/2020	
	ING CO.		ns Environ	mental		4547316.96	BORING M			DPT	
DRILL			ason A.		EASTING:	717886.38	TYPE OF S	URFACE:	Soy	/bean Field	1
	OGIST:		Travis H.		DEPTH TO WATER:	38 ft					
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR	CODE		DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
_					Bottom of	Hole @ 50 feet			0		
_											
55	1055.0										
55	1055.0								0		
									0		
60	1050.0										
									0		
<u> </u>	1045.0										
65	1045.0								0		
_									0		
70	1040.0										
									0		
	100-1										
75	1035.0										

					BURING LUG						
PROJECT: LPSNRD - 2 Communities					BORING DEPTH: 30 ft				ADS020		
EA PROJECT #: 6333202					SURFACE ELEV: 1,084.00				12/8/2020		
DRILLING CO.: Plains Environmental			mental	NORTHING: 4547295.71				DPT			
DRILLER: Jason A.				EASTING: 720659.47		TYPE OF SURFACE:		Maintained Grass			
GEOLOGIST: Travis H.				DEPTH TO WATER:	24 ft			(Ashland School lawn)			
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	
(FT)	(FT)	CONST.		CODE		DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR4/3	ML		high stiffness, dry to bot traces	DPT	60	100		
5	1079.0		10YR4/3	CL		ow to med stiffness,	DPT	60	100		
	107/10										
	1074.0				Same a	s previous	DPT	60	100		
 	1069.0		10YR7/2	SP		ow to med density, ne to fine sand grains	DPT	60	100		
20	1064.0				Same as	s previous	DPT	60	100		
2 5	1059.0										

EA Engineering, Science and, Technology, Inc., PBC

BORING LOG

_					, IIIC., FBC		-			ORING	200
PROJI			- 2 Commu		BORING DEPTH:	30 ft	BORING N		ADS		
EA PR	OJECT	#:	6333202	2	SURFACE ELEV:	1,084.00	DATE DRIL	LED:	12/8	8/2020	
DRILL	ING CO.	Plair	ns Environi	mental	NORTHING:	4547295.71	BORING M	ETHOD:		DPT	
DRILL	ER:	J	ason A.		EASTING:	720659.47	TYPE OF S	URFACE:	Main	tained Gra	SS
	OGIST:		Travis H.		DEPTH TO WATER:	24 ft				d School la	
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.	COLOR			DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
(1)	(11)	CON31.								Count	DAIA
			10YR6/3	SP		med to high density,	DPT	60	100		
					saturated, fine to	coarse sand grains					
30	1054.0										
					Bottom of H	lole @ 30 feet	1		0		
-											
35	1049.0										
55	1040.0								0		
-									0		
40	1044.0										
									0		
45	1039.0										
									0		
-											
-											
-											
-											
-											
-											
50 -	1024.0										
50	1034.0				1						

EA Engineering, Science and, Technology, Inc., PBC

BORING LOG

						05.4		-			200
PROJ			- 2 Commu			35 ft	BORING N		ADS		
	OJECT		6333202			1,112.00	DATE DRIL			/2020	
	ING CO.		ns Environi	mental		4547935.05	BORING M			DPT	
DRILL			ason A.		EASTING:	717909.13	TYPE OF S	URFACE:		tained gras	
	OGIST:		Travis H.		DEPTH TO WATER:	34 ft	_			ce front ya	
DEP.	ELEV	WELL		USCS			SAMPLE	LENGTH	% RE-	Blow	LAB
(FT)	(FT)	CONST.				DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
			10YR4/2	ML		own, dry, root traces, ery fine sand	DPT	36	60		
5	1107.0		10\\\\B.4/4	ML	Silt Joom, dark val	lowish brown, moist,	DPT	60	100		
			10YR4/4	ML		n stiffness					
10	1102.0		10YR7/3	SP	Sand. very pale br	own, moist, very fine	DPT	48	80		
	1097.0					grains					
					Same a	s previous	DPT	60	100		
20 -	1092.0				Same a	s previous	DPT	60	100		
25	1087.0										

EA Engineering, Science and, Technology, Inc., PBC

BORING LOG

PROJECT: LPSNRD - 2 Communies BORING DEPTH: 35 nt BORING NO:: ABS21 DBILLING C0: Finise Environmental Jason A. SURFACE ELLY: 112.00 DATE RILLED:: 127/2020 GE0LOGIST: Travia H. DEPTH TO WATER: 34 ft Y (residence from yard) (residence from yard) GE0LOGIST: Travia H. DEPTH TO WATER: 34 ft Y (residence from yard) GPT LEV Same as previous DPT 60 100 AT GPT LEV CONST. COLOR Same as previous DPT 60 100 AT GPT LEV Arrand agrand agrand DPT 60 100 Interview Interview<						, IIIС., РВС					ORING	200
DRILLING C0: Pintane Environmental NORTHING: 4347935.05 BORING METHOD: DPT Manual and grass GE0L-ORIST: Travis H. DEPTH TO WATER: 34 ft Manual and grass Inserver of the second sec	PROJ	ECT:	LPSNRD	- 2 Commu	unities	BORING DEPTH:	35 ft	BORING N	0.:	ADS	021	
DRILLING: Plane Environmental NORTHING: 4647835.05 BORING METHOD: DPT Manual and grass GE0.LOSIST Travis H. DEPTH TO WATER: 34 th Manual and grass Iffee of the second secon	EA PR	OJECT #	#:	6333202		SURFACE ELEV:	1,112.00	DATE DRIL	LED:	12/7	/2020	
Jacon A. EASTING: 71700.13 TYPE OF SURFACE: Manianed grass 0E0.04157 Travis H. DEPTH TO WATER: 34 ft SAMPLE LENGTH VS.RE Bion LAB 0E7. CLV COLOR COLOR GEOLOGIST SAMPLE LENGTH VS.RE Bion LAB 0F1 COLOR COLOR COLOR GEOLOGIST SAMPLE LENGTH VS.RE Bion LAB 0 IO COLOR COLOR GEOLOGIST SAMPLE LENGTH VS.RE Bion LAB 0 IO COLOR COLOR GEOLOGIST SAMPLE LENGTH VS.RE Bion LAB 30 1082.0 I IO Sand yelowish brown, med to high Geologist as and grains DPT 60 100 IO												
GEOLOGIST: Travis H. DEPTH TO WATER: 34 ft Travis H. Travis H. DEP ELEY (F) CONST. COLOR CODE GEOLOGIC DESCRIPTION SMPLE LEIO(N) SRE Boot COVERY Boot DPT 60 100 Image: Construction of Mole State Image: Construction of Mole State DPT 60 100 Image: Construction of Mole State Image: Constru												35
DEP (FT) LEV (FT) WELL CONST. COLOR USCS COUR GEOLOGIC DESCRIPTION SAMPLE METHOD LENGTH (IN) % RE- COURCY Blow LAB Count LAB Count 1 1 1 1 1 1 1 1000000000000000000000000000000000000												
(FT) CONST. COLOR CODE GEOLOGIC DESCRIPTION METHOD (N) COVERV Count DATA 1				Travis H.		DEPTH TO WATER:	34 π					
30 1082.0 1077.0 10785/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains DPT 60 100 0 36 1077.0 0 10785/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse 0 0 0 40 1072.0 0 0 0 0 0 0												
30 1082.0 DPT 60 100 33 1077.0 1078.54 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains 0 36 1077.0 Bottom of Hole @ 35 feet 0 0 40 1072.0 Bottom of Hole @ 35 feet 0 0 41 1067.0 Image: same same same same same same same same	(FT)	(FT)	CONST.	COLOR	CODE	GEOLOGIC I	DESCRIPTION	METHOD	(IN.)	COVERY	Count	DATA
30 1082.0 DPT 60 100 33 1077.0 1078.54 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains 0 36 1077.0 Bottom of Hole @ 35 feet 0 0 40 1072.0 Bottom of Hole @ 35 feet 0 0 41 1067.0 Image: same same same same same same same same						Same as	s previous	DPT	60	100		
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0	_											
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0												
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0	_											
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0												
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0	_											
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0												
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0												
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0												
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0												
DPT 60 100 107R5/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains Bottom of Hole @ 35 feet 0 1072.0	30	1082.0										
1077.0 1077.6/4 SW Sand, yellowish brown, med to high density, saturated, fine to coarse sand grains 35 1077.0 Bottom of Hole @ 35 feet 0 40 1072.0 0 40 1072.0 0 41 1077.0 0								DPT	60	100		
35 1077.0 0 40 1072.0 0 45 1067.0 0								511	00	100		
35 1077.0 0 40 1072.0 0 45 1067.0 0												
35 1077.0 0 40 1072.0 0 45 1067.0 0												
35 1077.0 0 40 1072.0 0 45 1067.0 0												
35 1077.0 0 40 1072.0 0 45 1067.0 0												
35 1077.0 0 40 1072.0 0 45 1067.0 0												
35 1077.0 0 40 1072.0 0 45 1067.0 0												
35 1077.0 0 40 1072.0 0 45 1067.0 0				10YR5/4	SW	Sand, yellowish b	rown, med to high	7				
35 1077.0 0 40 1072.0 0 40 1072.0 0 45 1067.0 0												
Bottom of Hole @ 35 feet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35	1077.0										
	00	1077.0						-		0		
	_					Bollomorn				0		
	_											
	40	1072.0										
	40	1072.0										
	_									0		
	-											
	4E -	1007.0										
	45	1067.0								_		
										0		
								1				
	-											
50 1062.0												
50 1062.0												
	50	1062.0						1				

This page intentionally left blank

Appendix C

Laboratory Results

REPORT NUMBER **20-351-0574 v2** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS011

SOIL ANALYSIS REPORT

							1	NEUTRAL	L AMMONIL	IM ACETA	TE(EXCHA	NGEABL	LE)										
LAB	SAMPLE	ORGANIC	P	HOSPHOR	RUS	ſ	POTASSIL	JM N	MAGNES	IUM	CALCIU	М	SODIU	М	pl	H	CATION EXCHANGE	PERCEN	BASE SAT	IURATIO	ON (C	OMPUTE	D)
NUMBER	IDENTIFICATION	L.O. I.	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRA			К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%		%	%
374			1:7	1:7	P										pH 1:1	INDEX	C.E.C.	К	Mg	Ca		Н	Na
		percent RATE	ppm RATE	ppm RA	TE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
	ADS011-05																						
	ADS011-10																						
	ADS011-15																						
	ADS011-20																						
	ADS011-25																						
73762	ADS011-30																						
LAB			NITRATE-N	(FIA)			_			SUL	FUR		ZINC	MAN	GANESE	IRON	C	OPPER	BORON	EXC	CESS C	SOLUBLE	
LAB NUMBER	SURFACE		NITRATE-N SUBSOIL			SUBSO	IL 2				S		Zn		Mn	Fe		Cu	В	RA	kæss Jme Vate	SALTS	
NUMBER		depth	SUBSOIL	depth			dep		Total Ibs/A	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374*	ppm lbs/A	depth (in) ppm	SUBSOIL		ppm	SUBSO Ibs/A			lbs/A		S AP	1	Zn dtpa		Mn	Fe DTPA		Cu	B SORB. DT	RA	ATE m	SALTS	
NUMBER *374* 73757	ppm lbs/A	depth (in) pprr 0-5	SUBSOIL	depth	ppm		dep		lbs/A	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758	ppm lbs/A 2 3 (1 2 5	depth (in) pprr 0-5 5-10	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759	ppm lbs/A 2 3 (1 2 5 1 2 5 1 2 1 (depth (in) ppr 0-5 5-10 0-15	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759 73760	ppm Ibs/A 2 3 0 1 2 5 1 2 10 1 2 10 1 2 15	depth (in) ppr 0-5 -5 5-10 -15 5-20	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759 73760 73761	ppm lbs/A 2 3 0 1 2 5 1 2 10 1 2 15 1 2 15 1 2 15 1 2 20	depth (in) ppn 0-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759 73760	ppm lbs/A 2 3 0 1 2 5 1 2 10 1 2 15 1 2 15 1 2 15 1 2 20	depth (in) ppr 0-5 -5 5-10 -15 5-20	SUBSOIL	depth	ppm		dep		lbs/A	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759 73760 73761	ppm lbs/A 2 3 0 1 2 5 1 2 10 1 2 15 1 2 15 1 2 15 1 2 20	depth (in) ppn 0-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759 73760 73761	ppm lbs/A 2 3 0 1 2 5 1 2 10 1 2 15 1 2 15 1 2 15 1 2 20	depth (in) ppn 0-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759 73760 73761	ppm lbs/A 2 3 0 1 2 5 1 2 10 1 2 15 1 2 15 1 2 15 1 2 20	depth (in) ppn 0-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	
NUMBER *374* 73757 73758 73759 73760 73761	ppm lbs/A 2 3 0 1 2 5 1 2 10 1 2 15 1 2 15 1 2 15 1 2 20	depth (in) ppn 0-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	depth	ppm		dep		Ibs/A 3 2	IC	S AP	1	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	'PA	ATE m	SALTS 1:1 mhos/	

REV.10/17

REPORT NUMBER **20-351-0575** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS012

SOIL ANALYSIS REPORT

								NEUTR/	AL AMMONI	JM ACETA	ATE(EXCH)	ANGEAB	LE)					-					
LAB	SAMPLE	ORGANIC	P	HOSPHOR	US	Р	POTASSI	UM	MAGNES	IUM	CALCIU	M	SODIU	М	pl	4	CATION EXCHANGE	PERCEN	T BASE S	ATURAT	TION	COMPUTE	ED)
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)		OLSEN Y) BICARBON		К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%		%	%
374			1:7	1:7	P										pH 1:1	INDEX	C.E.C.	К	Mg	Ca	a	н	Na
-		percent RATE	ppm RATE	ppm RA	TE ppm I	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
	ADS012-05																						
	ADS012-10																						
	ADS012-15																						
	ADS012-20																						
73767	ADS012-25																						
73768	ADS012-30																						
LAB			NITRATE-N	(FIA)						SU	LFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORC	N	EXCESS	SOLUBLE	E
LAB NUMBER	SURFACE		NITRATE-N SUBSOIL			SUBSOIL	L2			-	S		Zn		Mn	Fe		Cu	В		EXCESS LIME RATE	SALTS	
NUMBER		depth	SUBSOIL	l depth			dep	pth	Total Ibs/A	-	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374*	ppm lbs/A	depth (in) ppn	SUBSOIL	1	ppm	SUBSOII Ibs/A	dep	pth n)	lbs/A	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu	B SORB. I		LIME	SALTS	
NUMBER *374* 73763	ppm lbs/A	depth (in) ppn 0-5	SUBSOIL	l depth			dep		lbs/A	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764	ppm lbs/A 2 3 4 3 4 5	depth (in) ppn 0-5 5-10	SUBSOIL	l depth			dep		lbs/A 3 4	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765	ppm lbs/A 2 3 0 3 4 5 2 3 10	depth (in) ppn 0-5 5-10 0-15	SUBSOIL	l depth			dep		^{Ibs/A} 3 4 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765 73766	ppm Ibs/A 2 3 4 3 4 5 2 3 1 1 2 1	depth (in) ppn 0-5 5-10 0-15 5-20	SUBSOIL	l depth			dep		^{Ibs/A} 3 4 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765 73766 73767	ppm Ibs/A 2 3 0 3 4 5 2 3 1 1 2 1 2 3 2	depth (in) ppn O-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	l depth			dep		Ibs/A 3 4 3 2 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765 73766	ppm Ibs/A 2 3 0 3 4 5 2 3 1 1 2 1 2 3 2	depth (in) ppn 0-5 5-10 0-15 5-20	SUBSOIL	l depth			dep		^{Ibs/A} 3 4 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765 73766 73767	ppm Ibs/A 2 3 0 3 4 5 2 3 1 1 2 1 2 3 2	depth (in) ppn O-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	l depth			dep		Ibs/A 3 4 3 2 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765 73766 73767	ppm Ibs/A 2 3 0 3 4 5 2 3 1 1 2 1 2 3 2	depth (in) ppn O-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	l depth			dep		Ibs/A 3 4 3 2 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765 73766 73767	ppm Ibs/A 2 3 0 3 4 5 2 3 1 1 2 1 2 3 2	depth (in) ppn O-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	l depth			dep		Ibs/A 3 4 3 2 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73763 73764 73765 73766 73767	ppm Ibs/A 2 3 0 3 4 5 2 3 1 1 2 1 2 3 2	depth (in) ppn O-5 - 5-10 - 0-15 - 5-20 - 0-25 -	SUBSOIL	l depth			dep		Ibs/A 3 4 3 2 3	- ppm	S CAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	

REV.10/17

REPORT NUMBER **20-351-0576** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS013

SOIL ANALYSIS REPORT

										AL AMMONI	JM ACET	ATE (EXCHA	ANGEABL	LE)										
LAB	SAMPLE	ORGAN			HOSPHOR			POTASS		MAGNES	IUM	CALCIU	М	SODIU	М	pl		CATION EXCHANGE					(COMPUTI	,
NUMBER	IDENTIFICATION	MATTE		P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRA	V) BICAR	EN BONATE	K		Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg		% Ca	% H	% Na
374				1:7 ppm RATE	1:7		Р	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	рн 1:1	INDEX	C.E.C. meq/100g	ĸ	ing		La	п	INd
	ADS013-05	percent	IVAL	ppin IAIL		пс ррп	INALE	ppm	INTE	ppin	INTE	ррп	IVAL	ррш	INAIL			meq/100g						
	ADS013-05 ADS013-10																							
	ADS013-15																							
	ADS013-20																							
	ADS013-25																							
	ADS013-30																							
/3//5	ADS013-35																							
LAB			N	ITRATE-N	(FIA)						SU	JLFUR		ZINC	MAN	IGANESE	IRON	C	OPPER		RON	EXCESS LIME	SOLUBL	
LAB NUMBER	SURFACE		N	ITRATE-N SUBSOIL 1			SUBS	DIL 2		Total	-	JLFUR S ICAP		ZINC Zn dtpa		IGANESE Mn DTPA	IRON Fe DTPA		OPPER Cu DTPA		RON B . dtpa	EXCESS LIME RATE	SOLUBL SALTS	
		depth (in)	ppm			ppm	SUBS(d	lepth (in)	Total Ibs/A	-	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu	SORE	B . dtpa	LIME RATE	SALTS	
NUMBER *374*	ppm lbs/A	(in)		SUBSOIL 1	depth	ppm		d		lbs/A	- I ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769	ppm lbs/A 2 3	(in) 0-5		SUBSOIL 1	depth	ppm		d		Ibs/A	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770	ppm lbs/A 2 3 1 2	(in) 0-5 5-10		SUBSOIL 1	depth	ppm		d		^{Ibs/A}	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770 73771	ppm lbs/A 2 3 1 2 1 2	(in) 0-5 5-10 10-15		SUBSOIL 1	depth	ppm		d		^{Ibs/A}	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770 73771 73772	ppm Ibs/A 2 3 1 2 1 2 1 2 1 2	(in) 0-5 5-10 10-15 15-20		SUBSOIL 1	depth	ppm		d		^{Ibs/A}	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770 73771 73772 73773	ppm Ibs/A 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	(in) 0-5 5-10 10-15 15-20 20-25		SUBSOIL 1	depth	ppm		d		^{Ibs/A}	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770 73771 73772 73773 73774	ppm Ibs/A 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	(m) 0-5 5-10 10-15 15-20 20-25 25-30		SUBSOIL 1	depth	ppm		d		^{Ibs/A}	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770 73771 73772 73773	ppm Ibs/A 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	(in) 0-5 5-10 10-15 15-20 20-25		SUBSOIL 1	depth	ppm		d		Ibs/A	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770 73771 73772 73773 73774	ppm Ibs/A 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	(m) 0-5 5-10 10-15 15-20 20-25 25-30		SUBSOIL 1	depth	ppm		d		^{Ibs/A}	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73769 73770 73771 73772 73773 73774	ppm Ibs/A 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	(m) 0-5 5-10 10-15 15-20 20-25 25-30		SUBSOIL 1	depth	ppm		d		^{Ibs/A}	- ppn	S ICAP	:	Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	SORE	B . dtpa	LIME RATE	SALTS 1:1 mmhos/	

REV.10/17

REPORT NUMBER **20-351-0577** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS014

SOIL ANALYSIS REPORT

											NEUT	RAL AMMON	IUM ACE	TATE (EXCHA	NGEAB	ile)				-	-					
LAB	SAN	MPLE		GANIC			OSPHO	RUS		POT	ASSIUM	MAGNE	SIUM	CALCIU	М	SODIUI	М	pł	4	CATION EXCHANGE	PERCEN	IT BASE S	ATURAT	FION (COMPUTE	D)
NUMBER	IDENTIF	ICATION	N	TTER 0. 1.	P ₁ (WEAK BR.		P ₂ STRONG ² BRA		LSEN BRONATE		К	Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%		%	%
374					1:7		1:7		Р									pH 1:1	INDEX	C.E.C.	К	Mg	Ca	a	н	Na
			perce	ent RATE	ppm f	ATE	ppm R/	ATE pp	m RATE	ppi	m RATI	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
73776	ADS01	4-05					- 1																			
73777	ADS01	4-10																								
73778	ADS01	4-15																								
							_		_		_															
LAB				1	NITRATE	-N (F	IA)						S	ULFUR		ZINC		GANESE	IRON	C	OPPER	BORC	N	EXCESS LIME	SOLUBLE	
LAB NUMBER		SURFACE		1			FIA)		SUB	SOIL 2		Total	S	ULFUR S ICAP		ZINC Zn DTPA		GANESE Mn DTPA	IRON Fe DTPA		OPPER Cu DTPA	BORC B SORB. I		EXCESS LIME RATE	SOLUBLE SALTS 1:1	
NUMBER *374*	ppm	SURFACE Ibs/A	depth (in)	ppm		DIL 1	HA) depth (in)	ppm			depth (in)	Total Ibs/A		S		Zn dtpa	:	Mn dtpa	Fe dtpa		Cu	B SORB. I		RATE	SALTS	
NUMBER	ppm				SUBS	DIL 1	depth	ppm					pr	S ICAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374*	_{ppm}	lbs/A	(in)	ppm	SUBS	DIL 1	depth	ppm				lbs/A		S ICAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73776	ppm 3 1	^{Ibs/A} 4	(in) 0-5	ppm	SUBS	DIL 1	depth	ppm				lbs/A		S ICAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73776 73777	ppm 3 1	^{Ibs/A} 4	(in) 0-5 5-10	ppm	SUBS	DIL 1	depth	ppm				Ibs/A		S ICAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73776 73777	ppm 3 1	^{Ibs/A} 4	(in) 0-5 5-10	ppm	SUBS	DIL 1	depth	ppm				Ibs/A		S ICAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73776 73777	ppm 3 1	^{Ibs/A} 4	(in) 0-5 5-10	ppm	SUBS	DIL 1	depth	ppm				Ibs/A		S ICAP		Zn dtpa		Mn dtpa	Fe dtpa		Cu dtpa	B SORB. I	OTPA	RATE	SALTS 1:1 mmhos/	

REV.10/17

REPORT NUMBER **20-351-0578** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS015

SOIL ANALYSIS REPORT

									NEUTR	AL AMMONIU	UM ACE	TATE(EXCH)	NGEAB	LE)									
LAB	SAMPLE	ORGAN			HOSPHOR			POTASS	IUM	MAGNES	SIUM	CALCIU	М	SODIU	N	рŀ		CATION EXCHANGE	PERCENT	T BASE SAT			,
NUMBER	IDENTIFICATION	MATTE		P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRAY	OLSI		К		Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca	% H	% Na
374				1:7 ppm RATE	1:7		Р	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	1:1	INDEX	C.E.C. meq/100g	ĸ	ivig	Ca	п	INd
73780 73781 73782 73783 73783 73784	ADS015-05 ADS015-10 ADS015-15 ADS015-20 ADS015-25 ADS015-30 ADS015-35																						
LAB NUMBER *374*	SURFACE	depth	N	ITRATE-N SUBSOIL 1 Ibs/A		ppm	SUBSC Ibs/A	de	epth in)	Total Ibs/A	-	JLFUR S ICAP m RATE		ZINC Zn DTPA m RATE		GANESE Mn DTPA m RATE	IRON Fe DTPA		OPPER Cu DTPA m RATE	BORON B SORB. DT ppm	RATE	SOLUBL SALTS 1:1 mmhos/ cm R/	
73779 73780 73781 73782 73783 73783 73784 73785	2 3 1 2 1 2 1 2	0-5 5-10 10-15 15-20 20-25 25-30 30-35								8 8 2 2 2 4													

REV.10/17

REPORT NUMBER **20-351-0579** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS016

SOIL ANALYSIS REPORT

			-						AL AMMONIL	JM ACETA	TE(EXCHA	NGEABL	_E)										
LAB	SAMPLE	ORGANIC		HOSPHOR	US		POTASSIL	UM	MAGNES	IUM	CALCIUI	м	SODIU	М	pl	Н	CATION EXCHANGE	PERCEN	T BASE SAT	FURATIC	ON (C	OMPUTE	D)
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRA		EN	К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%		%	%
374			1:7	1:7	1	Р									pH 1:1	INDEX	C.E.C.	к	Mg	Ca		н	Na
		percent RATE	ppm RATE	ppm RA	TE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
	ADS016-05																						
	ADS016-10																						
	ADS016-15																						
	ADS016-20																						
	ADS016-25																						
73792	ADS016-30																						
LAB			NITRATE-N	(FIA)						SUL	FUR	Z	ZINC	MAN	GANESE	IRON	C	OPPER	BORON	EXC	XCESS	SOLUBLE	
LAB NUMBER	SURFACE		NITRATE-N SUBSOIL			SUBSC	DIL 2			-	S		Zn		Mn	Fe		Cu	В	RA	XCESS LIME RATE	SALTS	
NUMBER		depth	SUBSOIL				dep	pth	Total Ibs/A	-	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374*	ppm lbs/A	depth (in) ppr	SUBSOIL	1	ppm	SUBSC Ibs/A	dep		lbs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu	B SORB. DT	RA	RATE	SALTS	
NUMBER *374* 73786	ppm lbs/A	depth (in) ppr 0-5	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787	ppm lbs/A 3 4 0 1 2 5	depth (in) ppr 0-5 5-10	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789	ppm lbs/A 3 4 0 1 2 5 1 2 10	depth (in) ppr 0-5 5-10 0-15	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789 73790	ppm Ibs/A 3 4 0 1 2 5 1 2 10 1 2 10 1 2 15	depth (in) ppr 0-5 5-10 0-15 5-20	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789	ppm Ibs/A 3 4 0 1 2 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2	depth (in) ppr 0-5 -5 0-10 -10 0-15 -5 0-25 -20	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789 73790	ppm Ibs/A 3 4 0 1 2 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2	depth (in) ppr 0-5 5-10 0-15 5-20	SUBSOIL	l depth	ppm		dep		lbs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789 73790 73791	ppm Ibs/A 3 4 0 1 2 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2	depth (in) ppr 0-5 -5 0-10 -10 0-15 -5 0-25 -20	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789 73790 73791	ppm Ibs/A 3 4 0 1 2 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2	depth (in) ppr 0-5 -5 0-10 -10 0-15 -5 0-25 -20	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789 73790 73791	ppm Ibs/A 3 4 0 1 2 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2	depth (in) ppr 0-5 -5 0-10 -10 0-15 -5 0-25 -20	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	
NUMBER *374* 73786 73787 73789 73790 73791	ppm Ibs/A 3 4 0 1 2 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2	depth (in) ppr 0-5 -5 0-10 -10 0-15 -5 0-25 -20	SUBSOIL	l depth	ppm		dep		Ibs/A	ıc ppm	S AP	I	Zn dtpa	1	Mn dtpa	Fe DTPA		Cu DTPA	B SORB. DT	°PA	RATE	SALTS 1:1 nmhos/	

REV.10/17

REPORT NUMBER **20-351-0581** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS017A

SOIL ANALYSIS REPORT

									AL AMMONI														
LAB	SAMPLE	ORGANIC		PHOSPHOR			POTASSI	UM	MAGNES	IUM	CALCIUI	И	SODIU	М	pl		CATION EXCHANGE		T BASE SA				,
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)	(STRONG ² BRA	VI BICARB		К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	% C		% H	% Na
374			1:7 ppm RAT	1:7	F	, I	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	рН 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg		a	п	INd
	ADS017A-05	percent RAIL	ррпі клі		пс ррп	NAIL	ррш	NAIL	ppm	NAIL	ррп	NAIL	ррп	NATE			meq/100g						
	ADS017A-10																						
	ADS017A-15																						
	ADS017A-20																						
	ADS017B-05																						
	ADS017B-10																						
73808	ADS017B-15																						
73809	ADS017B-20																						
73810	ADS017B-25																						
LAB			NITRATE-N	(FIA)				_		SUL	FUR		ZINC	MANO	GANESE	IRON		OPPER	BORC	N	EXCESS	SOLUBL	E
LAB NUMBER	SURFACE		NITRATE-N SUBSOIL			SUBSC	DIL 2			-	S		Zn		Mn	Fe		Cu	В		EXCESS LIME RATE	SALTS	
NUMBER	SURFACE	depth				SUBSC		pth	Total Ibs/A	-											LIME		
NUMBER *374*	ppm lbs/A	depth (in) ppn	SUBSOIL	1	ppm	SUBSC Ibs/A	de	pth in)	lbs/A	- IC ppm	S TAP	Т	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu	B SORB. I		LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802	ppm lbs/A	depth (in) ppn 0-5	SUBSOIL	1 depth	ppm		de		lbs/A	- ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803	ppm Ibs/A 3 4 2 3	depth (in) ppn 0-5 5-10	SUBSOIL	1 depth	ppm		de		^{Ibs/A}	- ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803 73804	ppm lbs/A 3 4 2 3 2 3 1	depth (in) ppn 0-5 5-10 10-15	SUBSOIL	1 depth	ppm		de		^{Ibs/A} 4 3 3	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803	ppm lbs/A 3 4 2 3 2 3 1 2 3 1 2 3 1	depth (in) ppn 0-5 5-10	SUBSOIL	1 depth	ppm		de		Ibs/A 4 3 3 3	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803 73804	ppm Ibs/A 3 4 2 3 2 3 2 3 2 3 5 8	depth (in) ppn 0-5 5-10 10-15	SUBSOIL	1 depth	ppm		de		^{Ibs/A} 4 3 3	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803 73804 73805	ppm Ibs/A 3 4 2 3 2 3 2 3 2 3 5 8	depth (in) ppn 0-5 5-10 10-15 15-20	SUBSOIL	1 depth	ppm		de		Ibs/A 4 3 3 3	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803 73804 73805 73806	ppm Ibs/A 3 4 2 3 2 3 1 2 3 1 2 3 1 5 8 3 4	depth (in) ppn 0-5 5-10 10-15 15-20 0-5 0-5	SUBSOIL	1 depth	ppm		de		Ibs/A 4 3 3 3 8 4	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803 73804 73805 73806 73807 73808	ppm Ibs/A 3 4 2 3 2 3 2 3 2 3 2 3 5 8 3 4 5 8 5 8	depth (in) ppn 0-5 5-10 10-15 5-20 0-5 5-10 5-10 0-5 10-15 10-15	SUBSOIL	1 depth	ppm		de		lbs/A 4 3 3 3 8 4 8	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803 73804 73805 73806 73807 73808 73808 73809	ppm Ibs/A 3 4 2 3 2 3 2 3 2 3 5 8 3 4 5 8 2 3	depth (in) ppn 0-5 5-10 10-15 5-20 0-5 5-10 10-15 5-10 10-15 5-20 10-5 5-10	SUBSOIL	1 depth	ppm		de		lbs/A 4 3 3 3 8 4 8 4 8 3	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	
NUMBER *374* 73802 73803 73804 73805 73806 73807 73808	ppm Ibs/A 3 4 2 3 2 3 2 3 2 3 5 8 3 4 5 8 2 3	depth (in) ppn 0-5 5-10 10-15 5-20 0-5 5-10 5-10 0-5 10-15 10-15	SUBSOIL	1 depth	ppm		de		lbs/A 4 3 3 3 8 4 8	ppm	S TAP	I	Zn dtpa	I	Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	LIME	SALTS 1:1 mmhos/	

REV.10/17

REPORT NUMBER 20-351-0580 COMPLETED DATE ACCOUNT Dec 18, 2020 RECEIVED DATE 8722 Dec 16, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **ADS018**

SOIL ANALYSIS REPORT

										NEUTR	AL AMMONI	UM ACE	TATE (EXCH	ANGEA	BLE)									
LAB		MPLE		ANIC		PHOSPHO			POTAS	SIUM	MAGNE	SIUM	CALCI	JM	SODIU	M	р		CATION EXCHANGE	PERCEN	T BASE SAT	URATION	(COMPUTI	ED)
NUMBER	IDENTI	FICATION		TTER .0. 1.	P ₁ (WEAK BRAY)			OLSEN ARBONATE	k	(Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	% Mg	% Ca	% H	% Na
374					1:7 ppm RAT	1:7		P pm RATE		RATE	ppm	RATE	ppm	RATE	ppm	RATE	рН 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca	п	INd
73793	<u> </u>	18-05	perce			- ppm			ppm	TOTIL	ppm	TUTE	ppm	TUTE	ppin	TUTE			meq/100g					
73794																								
73795																								
73796																								
73797																								
73798																								
73799																								
73800																								
73801	ADSO	18-45																						
LAB				1	NITRATE-N							S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	LIME	SOLUBL	
NUMBER	r	SURFACE			SUBSOI	1		SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DTI	PA RATE	SALTS 1:1	
374	ppm	lbs/A	depth (in)	ppm	lbs/A	depth (in)	ppn	n Ibs/		depth (in)	lbs/A	pp	om RATI	E p	om RATE	E pp	om RATE	ppm	RATE p	om RATE	ppm f	RATE	mmhos/ cm R	ATE
73793	3	4	0-5								4	-												
73794	1	2	5-10								2	2												
73795	2	3	10-15	5							23	;												
73796	2	3	15-20)							3	;												
73797	2	3	20-25	5							3	;												
73798	2	3	25-30)							3													
73799	1	2	30-35	5							2	2												
73800	2	3	35-40)							3	3												
73801	4	6	40-45	5							6	5												

REPORT NUMBER 20-351-0582 COMPLETED DATE ACCOUNT Dec 18, 2020 RECEIVED DATE 8722 Dec 16, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **ADS019**

SOIL ANALYSIS REPORT

										NEU	TRAL AMN	ONIUM AC	CETATE (EX	CHANG	EABLE)											
LAB	SAMPLE		ORGAN			HOSPHO	DRUS		POTA	SSIUM	MAG	NESIUM	CAL	CIUM		SODIUN	N	pl		CATION EXCHANGE	PERCEN	T BASE SA	URATION	(COMP	JTED)	
NUMBER	IDENTIFICAT	ION	MATT	ER	P ₁ (WEAK BRAY)			OLSEN ICARBONATE		К		Иg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	%	%	%	% H		% Na
374			percent		1:7 ppm RATE	1:7		P ppm RATE		n RA	TE ppn	RATE	E ppm	RA	те	ppm	RATE	pH 1:1	INDEX	C.E.C. meq/100g	К	Mg	Ca			ina
	ADS019-0	5	percent	INAIL	ррпппал	ppm			. ppn		пс ррп					ррпп	IVAL			meq/100g						
	ADS019-0																									
	ADS019-1																									
	ADS019-2																									
	ADS019-2																									
	ADS019-3																									
	ADS019-3																									
	ADS019-4																									
	ADS019-4																									
73820	ADS019-5)																								
LAB				N	ITRATE-N	(FIA)							SULFUR		ZIN		MAN	GANESE	IRON	C	OPPER	BORON	LIM	s SOLU	-	
NUMBER	SURF				SUBSOIL	1	_	SUB	SOIL 2				S ICAP		Zi DTI			Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	'PA	SAL		
374	ppm lbs/A		lepth (in)	ppm	lbs/A	depth (in)	p	pm lb:	5/A	depth (in)	lbs/	\	opm F	ATE	ppm	RATE	ррі	n RATE	ppm	RATE p	om RATE	ppm	RATE	mmhos/ cm	RATE	
73811	3	4 C)-5									4														
73812	3	4 5·	-10									4														
73813	2	3 10)-15									3														
73814	2	3 15	5-20									3														
73815	2	3 20)-25									3														
73816	3	4 25	5-30									4														
73817	4	6 30)-35									6														
73818	4	6 35	5-40									6														
73819	4	6 40)-45									6														
73820	4	6 45	5-50									6														

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-351-0583** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS020

SOIL ANALYSIS REPORT

									NEUTRA	AL AMMONIU	JM ACET	ATE (EXCHA	NGEABL	E)										
LAB	SAMPLE	ORG		Р	HOSPHOR	US	ł	POTASSI	UM	MAGNES	IUM	CALCIU	М	SODIUI	N	рŀ	ł	CATION EXCHANGE	PERCEN	T BASE S	ATURA	TION (COMPUT	ED)
NUMBER	IDENTIFICATIO			P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRA			К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%		%	%
374				1:7	1:7	P										pH 1:1	INDEX	C.E.C.	К	Mg	C	a	Н	Na
			it RATE	ppm RATE	ppm RA	TE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
	ADS020-05																							
	ADS020-10																							
	ADS020-15																							
	ADS020-20																							
	ADS020-25																							
73826	ADS020-30																							
LAB		•	N	IITRATE-N	(FIA)						SU	ILFUR	Z	ZINC	MAN	GANESE	IRON	C	OPPER	BOR	NC	EXCESS	SOLUBL	E
LAB NUMBER	SURFAC	E	N	IITRATE-N SUBSOIL 1			SUBSO	L2			-	S		Zn		Mn	Fe		Cu	E		EXCESS LIME RATE	SALTS	
NUMBER		E depth	N				SUBSO		pth	Total lbs/A	-											RATE		
NUMBER *374*	ppm lbs/A	depth (in)	ppm			ppm	SUBSO Ibs/A	de	pth in)	lbs/A	ı ppm	S ICAP	г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu	E SORB.		RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821	ppm lbs/A 4 6	depth (in) 6 0-5	ppm	SUBSOIL	depth	ppm		de		Ibs/A	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822	ppm lbs/A 4 6 1 2	depth (in) 6 0-5 2 5-10	ppm	SUBSOIL	depth	ppm		de		^{Ibs/A}	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823	ppm lbs/A 4 6 1 2 1 2	depth (in) 6 0-5 2 5-10 2 10-15	ppm	SUBSOIL	depth	ppm		de		^{Ibs/A}	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823 73824	ppm lbs/A 4 6 1 2 1 2 1 2 1 2	depth (in) 6 0-5 2 5-10 2 10-15 2 15-20	ppm	SUBSOIL	depth	ppm		de		^{Ibs/A}	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823 73824 73825	ppm lbs/A 4 6 1 2 1 2 1 2 2 3	depth (in) 6 0-5 2 5-10 2 10-15 2 15-20 3 20-25	ppm	SUBSOIL	depth	ppm		de		lbs/A 6 2 2 2 3	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823 73824	ppm lbs/A 4 6 1 2 1 2 1 2 2 3	depth (in) 6 0-5 2 5-10 2 10-15 2 15-20	ppm	SUBSOIL	depth	ppm		de		^{Ibs/A}	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823 73824 73825	ppm lbs/A 4 6 1 2 1 2 1 2 2 3	depth (in) 6 0-5 2 5-10 2 10-15 2 15-20 3 20-25	ppm	SUBSOIL	depth	ppm		de		lbs/A 6 2 2 2 3	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823 73824 73825	ppm lbs/A 4 6 1 2 1 2 1 2 2 3	depth (in) 6 0-5 2 5-10 2 10-15 2 15-20 3 20-25	ppm	SUBSOIL	depth	ppm		de		lbs/A 6 2 2 2 3	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823 73824 73825	ppm lbs/A 4 6 1 2 1 2 1 2 2 3	depth (in) 6 0-5 2 5-10 2 10-15 2 15-20 3 20-25	ppm	SUBSOIL	depth	ppm		de		lbs/A 6 2 2 2 3	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	
NUMBER *374* 73821 73822 73823 73824 73825	ppm lbs/A 4 6 1 2 1 2 1 2 2 3	depth (in) 6 0-5 2 5-10 2 10-15 2 15-20 3 20-25	ppm	SUBSOIL	depth	ppm		de		lbs/A 6 2 2 2 3	ppm	S ICAP	Г	Zn otpa	:	Mn dtpa	Fe DTPA		Cu DTPA	E SORB.	DTPA	RATE	SALTS 1:1 mmhos/	

REPORT NUMBER **20-351-0584** COMPLETED DATE Dec 18, 2020 RECEIVED DATE Dec 16, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ADS021

SOIL ANALYSIS REPORT

					_						-		RAL AMMONI				BLE)									
LAB	-	MPLE		GANIC			PHOSE	PHORU	1		POTAS		MAGNES	IUM	CALCIU	М	SODIU		pł		CATION EXCHANGE	PERCEN	T BASE SA	TURATION	I (COMPUT	ED)
NUMBER	IDENTI	FICATION		ATTER		P, NEAK BRAY)			OLSE	N ONATE	К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	% Mg	% Ca	% H	% Na
374				cent RA		1:7 ppm RAT	1	1:7	P			RATE		RATE		RATE		RATE	pH 1:1	INDEX	C.E.C.	ĸ	IVIG	Ca		INd
73828		21.05	per	Cent KA		ррп кап	ppn	I NATE	ppm	NATE	ppm	NATE	ppm	NATE	ppm	NATE	ppm	NATE			meq/100g					
73829																										
73830																										
73831																										
73832																										
73833																										
73834	ADS02	21-35																								
LAB					NI	TRATE-N	(FIA)							S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	LIM	00100	
NUMBER		SURFACE				SUBSOIL	1			SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D	RAT		
374			depth					pth				lepth	Ibs/A												mmhos/	
	ppm	Ibs/A	(in)		om	lbs/A	(ii	n)	ppm	lbs//	4	(in)	2		om RATE	pp	om RATE	: pp	om RATE	ppm	RATE pp	om RATE	ppm	RATE	cm F	ATE
73828	2		0-5										3													
73829	1		5-1										2													
73830	23	34											34													
73831	16	24											24													
73832	5		20-2										8													
73833			25-3																							
73834	4	6 3	30-3	5									6													
														1											1	

REV.10/17

REPORT NUMBER 20-330-0097 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ASS011

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

SOIL ANALYSIS REPORT

										NEUTR	AL AMMON	UM ACE	TATE (EXCH	ANGEA	BLE)									
LAB	-	MPLE		ANIC		PHOSPHO	RUS		POTASS	SIUM	MAGNE	SIUM	CALCI	JM	SODIU	М	pl		CATION EXCHANGE	PERCENT	T BASE SAT	FURATION	(COMPUT	ED)
NUMBER	IDENTIF	ICATION		ITER .o. i.	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BR		EN	К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
372					1:7	1:7		Р									pH 1:1	INDEX	C.E.C.	К	Mg	Са	н	Na
				nt RATE	ppm RAT	E ppm R	AIE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
72836																								
72837																								
72838																								
72839																								
72840	ASS01 ⁻	1-01-15																						
72841	ASS01 ⁻	1-02-03																						
72842	ASS01 ⁻	1-02-06																						
72843	ASS01 ⁻	1-02-09																						
72844	ASS01 ⁻	1-02-12																						
72845	ASS01 ⁻	1-02-15																						
LAB				1	NITRATE-N	(FIA)						S	ULFUR		ZINC	MAN	GANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	E
NUMBER		SURFACE			SUBSOIL			SUBSO	OIL 2			-	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	LIME RATE	SALTS	
372			depth			depth			d	lepth	Total Ibs/A		ICAP		DIPA		DIPA	DIPA		DIPA	SORB. DI	PA	1:1 mmhos/	
	ppm	lbs/A	(in)	ppm	lbs/A	(in)	ppm	lbs/A	4	(in)	-	рр	om RAT	E p	om RATE	рр	m RATE	ppm	RATE pp	om RATE	ppm	RATE	cm R	ATE
72836	1	1	0-3								1													
72837	1	1	3-6								1													
72838	12	11	6-9								11													
72839	11	10	9-12								10)												
72840	2	2	12-15	5							2	2												
72841	1	1	0-3								1	1												
72842	1	1	3-6								1	1												
72843	1	1	6-9								1	1												
72844	1	1	9-12								1	1												
72845	1	1	12-15	5							1													

REV.10/17

REPORT NUMBER 20-330-0097 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS011

SOIL ANALYSIS REPORT

							NEUT	RAL AMMONI	IUM ACET	TATE(EXCH/	ANGEAB	BLE)									
LAB	SAMPLE	ORGANIC		HOSPHOR		_	TASSIUM	MAGNE	SIUM	CALCIU	M	SODIU	М	р		CATION EXCHANGE	PERCENT	BASE SAT	URATION	(COMPUTE	ED)
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)) BICARBONA	TE	К	Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	% Na
372			1:7 ppm RATE	1:7	P E ppm R/		opm RATE	ppm	RATE	ppm	RATE	ppm	RATE	pH 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca	п	ina
728/16	ASS011-03-03	percent intil		ppin inti				ppm	TUTE	ppm	TUTE	ppm	IVITE			meq/100g					
	ASS011-03-06																				
	ASS011-03-00																				
	ASS011-03-09																				
	ASS011-03-12 ASS011-03-15																				
	ASS011-03-15 ASS011-04-03																				
	ASS011-04-03																				
	ASS011-04-00 ASS011-04-09																				
	ASS011-04-09																				
	ASS011-04-12																				
	A33011-04-15						_						1						D. CTCC		
LAB			NITRATE-N					1	_ SU	JLFUR S		ZINC Zn	MAN	GANESE Mn	IRON Fe		OPPER Cu	BORON B	EXCESS LIME RATE	SOLUBL SALTS	
NUMBER	SURFACE		SUBSOIL 1		SI	JBSOIL	1	Total		ICAP		DTPA		DTPA	DTPA		DTPA	SORB. DTI		1:1	
372	ppm lbs/A	depth (in) ppm	lbs/A	depth (in)	ppm	lbs/A	depth (in)	lbs/A	ppr	n RATE	pp	om RATE	рр	n RATE	ppm	RATE p	om RATE	ppm f	RATE	mmhos/ cm R/	ATE
72846	1 1 ()-3						1													
72847	1 1 3	3-6						1										_			
72848	1 1 6	5-9						1										_			
72849	1 1 9	-12						1										_			
72850	1 12	2-15						1													
72851	1 1 ()-3						1													
72853	1 1 3	3-6						1													
72854	1 1 6	5-9						1													
72855	1 1 9	-12						1													
72856	1 12	2-15						1													

REV.10/17

REPORT NUMBER **20-330-0097** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS011

SOIL ANALYSIS REPORT

												NEUT	RAL AMMO	NUM AC	ETATE (EXC	HANGEA	BLE)										
LAB	SA	MPLE		SANIC		Pł	HOSPHC	RUS			POTAS	SIUM	MAGN	SIUM	CALC	UM	SOD	UM	р	н	CATION EXCHANGE	PERCEN	T BASE SA	TURATIO	N (COMP	UTED)	
NUMBER	IDENT	IFICATION	•	TTER	P ₁ (WEAK BI		P ₂ (STRONG ² B			N	I	<	Me	J	Ca	I	N	а	SOIL	BUFFER	CAPACITY	%	%	%	%		%
372					1:7		1:7		Р										pH 1:1	INDEX	C.E.C.	К	Mg	Ca	Н		Na
				ent RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
72857	ASS01	1-05-03	3																								
72858	ASS01	1-05-06	3																								
72859	ASS01	1-05-09)																								
72860	ASS01	1-05-12	2																								
72861	ASS01	1-05-15	5																								
LAB					NITRATI	E-N (FIA)	_							SULFUR		ZINC	MA	NGANESE	IRON	C	OPPER	BORO	LIM	E	-	
NUMBER		SURFACE			SUBS	OIL 1				SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D	ра Ват	E SAL		
372	ppm	lbs/A	depth (in)	ppm	lbs/	A	depth (in)		ppm	lbs//	4	depth (in)	lbs/A		pm RA	re p	opm RA	.TE p	opm RATE	ppm	RATE p	om RATE	ppm	RATE	mmhos, cm	RATE	
72857	2	2	0-3											2													
72858	1	1	3-6											1													
72859	1	1	6-9											1													
72860	1	1	9-12	2										1													
72861	1	1	12-1	5										1													

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days. In reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference

Pg. 9 of 21 Notes 37272836-37272886 20 Lab #/Order # (Internal Use) Vadose Zone Sampling Program Chain-of-Custody Form Lower Platte South Natural Resources District 20 11/24/ **Tests Requested** Lower Platte South NRD Lincoln, NE 68501-3581 Phone: (402) 476-2729 Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Nitrate-N × × × × × × × × × × × × × × × P.O. Box 83581 Report & Bill To: Dick Ehrman Matrix Soil Time 1203 204 223 238 202 222 022 200 1234 1221 1201 0821 612 1235 1237 (202-02-1 0202-02-1 292-02-11 1-20-202-1 0202-02-1 0202-02-1 11-20-2020 1-20-2020 0202-02-11 0202-02-1 0202-02-11 0202-02-11 0202-02-11 11-14-2020 25 m Date 0202-02-11 Relinquished By (Signature): Relinquished By (Signature); Relinquished By (Signature): Received By (Signature): Received By (Signature): Received By (Signature): ASS011-01-03 ASS011-01-06 ASS011-01-09 ASS011-01-12 ASS011-01-15 ASS011-02-03 ASS0:11-02-06 ASS011-02-09 ASS011-02-15 ASS011-02-12 ASS011-03-06 ASS011-03-03 ASS011-03-09 ASS011-03-15 ASS011-03-12 Sample # Account #: 8722

			A	Tests Requested	Lab #/Order #	Notes
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	INDLES
ASS011-04-03	1-20-2020	1254	Soil	X		
ASS011-04-06	0202-02-11	1255	Soil	X		
ASS011-04-09	0102-02-11	1256	Soil	X .		
ASS011-04-12	0202-02-11	1257	Soil	X		
ASS011-04-15	11-20-2020	1258	Soil	X		
ASS011-05-03	11-20-202	1339	Soil	Х		
ASS011-05-06	11-20-2020	1340	Soil	X		
ASS011-05-09	11-20-2020	1341	Soil	X		
ASS011-05-12	11-20-2020	1342	Soil	X		
ASS011-05-15	11-20-2020	1343	Soil	X		
ASS012-01-03	1-20-2020	1728	Soil	X		50 2 3363
ASS012-01-06	1-20-2020	1729	Soil	X	100 million (852	
ASS012-01-09	01-20-2070	130	Soil	X	372728	37272836-37272880
ASS012-01-12	0200-00-1	1731	Soil	×		
ASS012-01-15 13 74		1732	Soil	X		
ASS012-02-03	0202-02-11	SHLI	Soil	X		
ASS012-02-06	0202-02-11	1746	Soil	×		
ASS012-02-09	11-20-2070	LHLI	Soil	X		i
ASS012-02-12	0202 -02-11	1748	Soil	X		3
ASS012-02-15	5202 02- Il	1749	Soil	X		-
ASS012-03-03	1-20-2020	1804	Soil	X		
ASS012-03-06	11-20.2070	1805	Soil	X		
ASS012-03-09	11-20-2024	1806	Soil	×		
ASS012-03-12	1-202-02-11	1807	Soil	X		
ASS012-03-15	11-20-2020	808	Soil	X		
ASS012-04-03	0202-02-1	1824	Soil	X		
ASS012-04-06	0202-02-11	18:25	Soil	X		
ASS012-04-09	1-20-2020	1826	Soil	×		
ASS012-04-12	11-20-2020	1827	Soil	X		
12 21 21-DA-10-01 DSA	AMC. 6-11	187,8	Soil	×		

uested Lab #/Order # Notes	(Internal Use)							~	3						3/2/2836-3/2/2880			
Tests Requested	Nitrate-N	Х	X	×	X	Х	X	X	X	×	X	×	X	×	×	×	×	
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
	Time	1842	1843	1844	1845	1846												
	Date	1-20-2020	0202-02-11	1-20-2020	0202-02-11	1-20-2020												
	Sample #	ASS012-05-03	ASS012-05-06	ASS012-05-09	ASS012-05-12	ASS012-05-25 14 77 11-20-2020												

7 -

REPORT NUMBER 20-330-0098 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

www.midwestlabs.com **IDENTIFICATION**

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

VADOSE ZONE SAMPLING PROGRAM ASS012

SOIL ANALYSIS REPORT

										AL AMMONI	UM ACE	TATE(EXCH	ANGEA	BLE)									
LAB	SAMPLE	ORGA	-	I	HOSPHO	RUS		POTASS	IUM	MAGNES	SIUM	CALCI	JM	SODIU	JM	р	Н	CATION EXCHANGE	PERCEN	T BASE SA	TURATION	(COMPUT	ED)
NUMBER	IDENTIFICATION		TER	P ₁ (WEAK BRAY)		AY) BICARI		К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
372				1:7	1:7		Р		DATE		DATE		DATE		DATE	pH 1:1	INDEX	C.E.C.	К	Mg	Ca	Н	Na
		-	t RATE	ppm RATE	ppm F	ATE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
	ASS012-01-03																						
	ASS012-01-06																						
	ASS012-01-09																						
	ASS012-01-12																						
	ASS012-01-13																						
	ASS012-02-03																						
	ASS012-02-06																						
	ASS012-02-09																						
72870	ASS012-02-12																						
72871	ASS012-02-15																						
LAB			Ν	NTRATE-N	(FIA)						SI	ULFUR		ZINC	MAN	IGANESE	IRON		OPPER	BORON	EXCESS	SOLUBL	E
NUMBER	SURFACE			SUBSOIL			SUBSC	DIL 2				S ICAP		Zn		Mn dtpa	Fe		Cu dtpa	B	RATE	SALTS	
372		depth			depth			de	epth	Total Ibs/A		ICAP		DTPA		DIPA	DTPA	·	DIPA	SORB. DI	PA	1:1 mmhos/	
	ppm Ibs/A	(in)	ppm	lbs/A	(in)	ppm	lbs/A	. ((in)		рр	m RAT	E p	om RATE	E pr	om RATE	ppm	RATE p	pm RATE	ppm	RATE	cm R	ATE
72862	2 2	0-3								2													
72863	1 1	3-6								1													
72864	2 2	6-9								2													
72865	2 2	9-12								2													
72866	2 1	12-13								1												1	
72867	2 2	0-3								2													
72868	1 1	3-6								1	1												
72869	2 2	6-9								2													
72870	2 2	9-12								2													
72871	3 3	12-15								3													

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0098 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

www.midwestlabs.com

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS012

SOIL ANALYSIS REPORT

											NEUTR	AL AMMON	UM ACE	TATE (EXCH	IANGEA	BLE)										
LAB	SAMP		ORGA	-		PH	OSPHOR	US		POTAS	SIUM	MAGNE	SIUM	CALCI	JM	SODIL	JM	р		CATION EXCHANGE	PERCEN	T BASE SA	TURATION	(COMP	JTED)	
NUMBER	IDENTIFIC	ATION	MAT L.O		P ₁ (WEAK BRA	~ (s	P ₂ STRONG ² BRA		SEN	К		Mg		Ca		Na	I	SOIL	BUFFER	CAPACITY	%	%	%	%		%
372					1:7		1:7		Р				0.175				0.175	pH 1:1	INDEX	C.E.C.	К	Mg	Ca	H	ſ	Na
			percent	RATE	ppm R	AIE	ppm RA	IE ppr	n RAIE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						_
	ASS012-0																									
	ASS012-0																									
	ASS012-(
	ASS012-(
	ASS012-(
	ASS012-(
72878	ASS012-(04-06																								
72879	ASS012-(04-09																								
72880	ASS012-0	04-12																								
72881	ASS012-0	04-13																								
LAB				Ν	IITRATE-	N (F	IA)						S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	N EXCES	s SOLU	BLE	
NUMBER	SU	IRFACE			SUBSC	IL 1			SUBS	OIL 2			-	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RAT			
372			depth				depth				lepth	Total Ibs/A		ICAF				DIFA	DIFA		DIFA	SOLD. DI	ITA	mmhos/		
		bs/A	(in)	ppm	lbs/A		(in)	ppm	lbs/	A	(in)			om RAT	E pj	om RAT	E p	om RATE	ppm	RATE pp	om RATE	ppm	RATE	cm	RATE	
72872	5		0-3									4														
72873	3	3	3-6									3														
72874	3		6-9									3														
72875	4		9-12									4														
72876	4		2-15									4														
72877	2		0-3									2	21													
72878	1		3-6									1														
72879	2	2	6-9									2	2													
72880	4		9-12									4	-													
72881	2	1 1	2-13									1														

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0098** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

www.midwestlabs.com

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 VADOSE ZONE SAMPLING PROGRAM ASS012

SOIL ANALYSIS REPORT

									NE	EUTRAL A	AMMONIUI	M ACETA	TE (EXCHA	NGEAB										
LAB		MPLE		ANIC	F	HOSPHOR	US	Р	OTASSIU	м м.	AGNESI	UM	CALCIU	М	SODIUI	М	pl		CATION EXCHANGE	PERCENT	BASE SA	URATION	(COMPUT	ED)
NUMBER	IDENT	FICATION		TTER .0. 1.	P ₁ (WEAK BRAY)		Y) BICARBON	JATE	К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
372					1:7	1:7	P		-								pH 1:1	INDEX	C.E.C.	к	Mg	Ca	Н	Na
				nt RATE	ppm RATE	ppm RA	TE ppm	RATE	ppm R	ATE	ppm f	RATE	ppm	RATE	ppm	RATE			meq/100g					
72882	ASS01	2-05-03	3						-		_													
72883	ASS01	2-05-06	3						-		_													
72884	ASS01	2-05-09)						- 1															
72885	ASS01	2-05-12	2						- 1															
72886	ASS01	2-05-14	L						- 1															
LAB				1	NITRATE-N	(FIA)							FUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	
NUMBER		SURFACE			SUBSOIL	1		SUBSOI	L2		Total		S IAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	RATE	SALTS	
372	ppm	lbs/A	depth (in)	ppm	lbs/A	depth (in)	ppm	lbs/A	depth (in)		lbs/A	ppm							RATE pp			RATE	mmhos/	ATE
72882	2	2	0-3								2													
72883	1	1	3-6								1													
72884	3	3	6-9								3													
72885	2	2	9-12								2													
72886	1	1	12-14								1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

Pg. 9 of 21 Notes 37272836-37272886 20 Lab #/Order # (Internal Use) Vadose Zone Sampling Program Chain-of-Custody Form Lower Platte South Natural Resources District 20 11/24/ **Tests Requested** Lower Platte South NRD Lincoln, NE 68501-3581 Phone: (402) 476-2729 Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Nitrate-N × × × × × × × × × × × × × × × P.O. Box 83581 Report & Bill To: Dick Ehrman Matrix Soil Time 1203 204 223 238 202 222 022 200 1234 1221 1201 0821 612 1235 1237 (202-02-1 0202-02-1 292-02-11 1-20-202-1 0202-02-1 0202-02-1 11-20-2020 1-20-2020 0202-02-11 0202-02-1 0202-02-11 0202-02-11 0202-02-11 11-14-2020 25 m Date 0202-02-11 Relinquished By (Signature): Relinquished By (Signature); Relinquished By (Signature): Received By (Signature): Received By (Signature): Received By (Signature): ASS011-01-03 ASS011-01-06 ASS011-01-09 ASS011-01-12 ASS011-01-15 ASS011-02-03 ASS0:11-02-06 ASS011-02-09 ASS011-02-15 ASS011-02-12 ASS011-03-06 ASS011-03-03 ASS011-03-09 ASS011-03-15 ASS011-03-12 Sample # Account #: 8722

			A	Tests Requested	Lab #/Order #	Notes
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	INDLES
ASS011-04-03	1-20-2020	1254	Soil	X		
ASS011-04-06	0202-02-11	1255	Soil	X		
ASS011-04-09	0102-02-11	1256	Soil	X .		
ASS011-04-12	0202-02-11	1257	Soil	X		
ASS011-04-15	11-20-2020	1258	Soil	X		
ASS011-05-03	11-20-202	1339	Soil	Х		
ASS011-05-06	11-20-2020	1340	Soil	X		
ASS011-05-09	11-20-2020	1341	Soil	X		
ASS011-05-12	11-20-2020	1342	Soil	X		
ASS011-05-15	11-20-2020	1343	Soil	X		
ASS012-01-03	1-20-2020	1728	Soil	X		50 2 3363
ASS012-01-06	1-20-2020	1729	Soil	X	100 miles 100 mi	
ASS012-01-09	01-20-2070	130	Soil	X	372728	37272836 - 37272880
ASS012-01-12	0200-00-1	1731	Soil	×		
ASS012-01-15 13 74		1732	Soil	X		
ASS012-02-03	0202-02-11	SHLI	Soil	X		
ASS012-02-06	0202-02-11	1746	Soil	×		
ASS012-02-09	11-20-2070	LHLI	Soil	X		i
ASS012-02-12	0202 -02-11	1748	Soil	X		3
ASS012-02-15	5202 02- Il	1749	Soil	X		-
ASS012-03-03	1-20-2020	1804	Soil	X		
ASS012-03-06	11-20.2070	1805	Soil	X		
ASS012-03-09	11-20-2024	1806	Soil	×		
ASS012-03-12	1-202-02-11	1807	Soil	X		
ASS012-03-15	11-20-2020	808	Soil	X		
ASS012-04-03	0202-02-1	1824	Soil	X		
ASS012-04-06	0202-02-11	18:25	Soil	X		
ASS012-04-09	1-20-2020	1826	Soil	×		
ASS012-04-12	11-20-2020	1827	Soil	X		
12 21 21-DA-10-01 DSA	AMC. 6-11	187,8	Soil	×		

uested Lab #/Order # Notes	(Internal Use)							~	3						3/2/2836-3/2/2880			
Tests Requested	Nitrate-N	Х	X	×	X	Х	X	X	X	×	X	×	X	×	×	×	×	
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
	Time	1842	1843	1844	1845	1846												
	Date	1-20-2020	0202-02-11	1-20-2020	0202-02-11	1-20-2020												
	Sample #	ASS012-05-03	ASS012-05-06	ASS012-05-09	ASS012-05-12	ASS012-05-25 14 77 11-20-2020												

7 -

REPORT NUMBER 20-330-0084 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS014

SOIL ANALYSIS REPORT

											NEUTR	AL AMMON	IUM ACE	TATE (EXC	HANGEA	BLE)										
LAB		1PLE	ORG	-		PHOSPH	IORUS	5	F	POTASS	UM	MAGNE	SIUM	CALC	UM	SODI	UM	р		CATION EXCHANGE	PERCEN	T BASE SA	TURATIO	N (CC	OMPUTE	D)
NUMBER	IDENTIFI	CATION		TER D. I.	P ₁ (WEAK BRAY)	P.		OLSEN BICARBON		К		Mg		Ca	1	Na	a	SOIL	BUFFER	CAPACITY	%	%	%		%	%
372					1:7	1:7	7	Р			DATE		DATE		DATE		DATE	pH 1:1	INDEX	C.E.C.	К	Mg	Ca		H	Na
				t kaie	ppm RA1	E ppm	RATE	ppm I	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
72580																										
72581																										
72582																										
72583																										
72584																										
72585																										
72586																										
72587																										
72588																										
72589	ASS014	-02-15																								
LAB				Ν	IITRATE-N	(FIA)							S	ULFUR		ZINC	IAM	NGANESE	IRON	C	OPPER	BORON	N EXCE	ESS S	OLUBLE	
NUMBER	9	SURFACE			SUBSOI	.1		9	SUBSO	IL 2		T	-	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D	RA		SALTS	
372			depth			dept					pth	Total Ibs/A													nhos/	
	ppm	Ibs/A	(in)	ppm	lbs/A	(in)		ppm	lbs/A	(n)	-	pp	om RA	re p	pm RAT	re p	pm RATE	ppm	RATE pp	om RATE	ppm	RATE		cm RAT	TE
72580			0-3																							
72581		1	3-6									Ĩ														
72582		1	6-9									Ĩ														
72583	1		9-12									1														
72584	1	1 1	2-15									1														
72585	1	1	0-3									1														
72586	1	1	3-6									1														
72587	1	1	6-9									1														
72588	1		9-12									1														
72589	1	1 1	2-15									1														

REV.10/17

REPORT NUMBER 20-330-0084 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS014

SOIL ANALYSIS REPORT

							NEUTR	AL AMMON	UM ACE	TATE(EXCH)	ANGEAB	ILE)									
LAB	SAMPLE	ORGANIC		HOSPHOR		POTASS		MAGNE		CALCIU	М	SODIUN	N	pl		CATION EXCHANGE	PERCENT	BASE SAT	TURATION	(COMPUT	,
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRAY	OLSEN BICARBONATE	К		Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca	% H	% Na
372			1:7 ppm RATE	1:7	P E ppm RATE		RATE	ppm	RATE	ppm	RATE	ppm	RATE	1:1	INDEX	meq/100g	IX.	ivig	Ca		ING
72590	ASS014-03-03																				
	ASS014-03-06																				
	ASS014-03-09																				
72593	ASS014-03-12																				
72594	ASS014-03-15																				
	ASS014-04-03																				
	ASS014-04-06																				
	ASS014-04-09																				
	ASS014-04-12																				
72599	ASS014-04-15																				
LAB			NITRATE-N	(FIA)					SU	JLFUR		ZINC	MAN	GANESE	IRON	C	OPPER	BORON	LIME	JOLODE	
NUMBER	SURFACE		SUBSOIL 1		SUBS	SOIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	PA RATE	SALTS 1:1	
372	ppm lbs/A	depth (in) ppm	lbs/A	depth (in)	ppm lbs		epth (in)	lbs/A	ppi	m RATE	рр	m RATE	рр	m RATE	ppm	RATE pp	om RATE	ppm	RATE	mmhos/ cm R	ATE
72590	1 1 (0-3						1													
72591	1 1 :	3-6						1													
72592		6-9						1													
72593		-12						1													
72594		2-15						1													
72595		0-3						1													
72596		3-6						1													
72597		6-9						1													
72598)-12						1													
72599	1 12	2-15						1													

REPORT NUMBER **20-330-0084** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS014

SOIL ANALYSIS REPORT

				-							NEUT	RAL AMMON	IUM ACE	ETATE (EXCH	ANGEA	BLE)					-						
LAB		AMPLE		GANIC		Pł	HOSPHC	RUS			POTAS		MAGNE	SIUM	CALCI	JM	SODIL		р		CATION EXCHANGE	PERCEN	T BASE SA	TURATIO	N (CON	NPUTED	D)
NUMBER	IDENT	IFICATION	•	TTER	P1 (WEAK BF	AV)	P ₂ (STRONG ² B			N DNATE	1	<	Mg		Ca		Na	1	SOIL	BUFFER INDEX	CAPACITY	% K	%	%	9	6 H	% Na
372				ent RATE	1:7		1:7		Р			DATE		DATE		DATE		DATE	pH 1:1	INDEA	C.E.C.	ĸ	Mg	Ca			INd
		4.05.00		ent RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
72600	ASSU	4-05-03	5																								
72601	ASS01	4-05-06	6																								
72602	ASS01	4-05-09)																								
72603	ASS01	4-05-12	2																								
72604	ASS01	4-05-18	5																								
LAB					NITRATE	-N (FIA)							S	ULFUR		ZINC	MAM	NGANESE	IRON	C	OPPER	BORON	N EXCE	ESS SO	LUBLE	
NUMBER	SURFACE			SUBSOIL 1				SUBS	OIL 2				S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RAT	TE S	ALTS			
372	ppm	lbs/A	depth (in)	ppm	lbs/	Ą	depth (in)		ppm	lbs//		depth (in)	Total Ibs/A		pm RAT	E p	pm RAT	E pj	pm RATE			om RATE		RATE	mmł cr		Ē
72600	2	2	0-3										2	2													
72601	1	1	3-6										1														
72602	1	1	6-9										1														
72603	1	1	9-12	2									1														
72604	1	1	12-1	5									1														

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

Pg. 12 of 21

amping r	רבסוווים גמתספר לסוול חמווחווים ניוספומוו סו כמיום א	1 01 canced				
				Tests Requested	Lab #/Order #	Notes
	Date	Time	Matrix	Nitrate-N	(Internal Use)	
	11-19-2020	1003	Soil	×		
	11-19-2020	hool	Soil	×		
ASS014-04-09	11-19-2020	1005	Soil	×		
ASS014-04-12	11-19-2020	1000	Soil	X		
ASS014-04-15	11-19-2020	1007	Soil	X		
ASS014-05-03	11-19-2020	1025	Soil	X		
	11-19-2020	020	Soil	X		
ASS014-05-09	11-19.2020	1027	Soil	X		
ASS014-05-12	11-19-2020	820	Soil	X		
ASS014-05-15	11-19-2020	1029	Soil	X		
ASS015-01-03	11-19-2020	1339	Soil	X		
ASS015-01-06	11-19-2020	1340	Soil	X		
ASS015-01-09	11-19-2020	1341	Soil	×		
ASS015-01-12	11-19-2020	342	Soil	×		
ASS015-01-15	11-19-2020	1343	Soil	X		
ASS015-02-03	-19-202s	1941	Soil	×		
ASS015-02-06	020201-11-11	1402	Soil	X		
ASS015-02-09	0202-101-11	1403	Soil	×	9	18
ASS015-02-12	11-19-2020	hohl	Soil	X	3727	37272580 - 37272630
ASS015-02-18 14 74	0202-61-11	1405	Soil	X		
ASS015-03-03	11-19-2020	1721	Soil	X		
ASS015-03-06	11-19-2020	1422	Soil	X		
ASS015-03-09	11-19-2020	1423	Soil	X		
ASS015-03-12	11-19-2020	1424	Soil	X		
ASS015-03-15	0202-61-11	1425	Soil	×		
ASS015-04-03	1-19-2020	1443	Soil	X		
ASS015-04-06	0202-61-11	htt	Soil	X		
ASS015-04-09	0202-61-11	1445	Soil	×		
ASS015-04-12	0202-61-11	1446	Soil	X		
ASSN15-04-15	11-19-201-11	1447	Soil	×		

2

÷

1.12

				Tests Requested	Lab #/Order #	Notes
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	
ASS015-05-03	11-19-2020	1500	Soil	Х		
ASS015-05-06	11-19-2020	1507	Soil	X		
ASS015-05-09	0202-61-11	1508	Soil	X		
ASS015-05-12	11-19-2020	1509	Soil	X		
ASS015-05-15	11-19-2020	1510	Soil	Х		
			Soil	X		
			Soil	X		
			Soil	×		
			Soil	X		200 3 回初2
			Soil	X	372	72580 - 37272630
			Soil	X	210	
			Soil	X		
			Soil	. X		and the state of the
			Soil	X		
			Soil	X	all and a second se	
			Soil	X		
			Soil	X		Indiana and
			Soil	X		
			Soil	X		in belt
			Soil	X		
			Soil	X		
			Soil	Х		
			Soil	X		
			Soil	X		
			Soil	X		
			Soil	X		
			Soil	X	State of the second sec	
			Soil	X		
			Soil	Х		
			Soil	×		

Ø

REPORT NUMBER 20-330-0085 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS015

SOIL ANALYSIS REPORT

										AL AMMON	UM ACE	TATE (EXC	ANGEAE	BLE)									
LAB	SAMPLE	ORG	-		PHOSPHO	RUS		POTASS	IUM	MAGNE	SIUM	CALCI	JM	SODIU	M	р	Н	CATION EXCHANGE	PERCENT	BASE SA	TURATION	(COMPUT	ED)
NUMBER	IDENTIFICATION		TER D. I.	P ₁ (WEAK BRAY)		AY) BICARE		К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	% K	%	%	% H	%
372				1:7	1:7		Р		RATE		DATE		DATE		DATE	pH 1:1	INDEX	C.E.C.	ĸ	Mg	Ca		Na
	100015 01 00		t RATE	ррп кап	ррп г	ATE ppm	RATE	ppm	NATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
	ASS015-01-03																						
	ASS015-01-06																						
	ASS015-01-09																						
	ASS015-01-12																						
	ASS015-01-15																						
	ASS015-02-03																						
	ASS015-02-06																						
	ASS015-02-09																						
	ASS015-02-12																						
72614	ASS015-02-14				_																		
LAB			١	ITRATE-N	(FIA)						S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCES	JOLODI	
NUMBER	SURFACE			SUBSOIL	1		SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	RATE		5
372	ppm lbs/A	depth (in)	ppm	lbs/A	depth (in)	ppm	lbs/A		epth (in)	lbs/A	pp	om RAT	E pr	om RATE	E pr	om RATE			om RATE	ppm	RATE	mmhos/ cm F	RATE
72605	3 3	0-3								3	3												
72606	1 1	3-6								1													
72607	1 1	6-9								1													
72608	2 2	9-12								2	2												
72609	2 2	12-15								2	2												
72610	1 1	0-3								1													
72611	1 1	3-6								1													
72612	2 2	6-9								2	2												
72613		9-12								1												1.1	
72614		12-14								1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0085 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS015

SOIL ANALYSIS REPORT

								[AL AMMONI	UM ACE	TATE (EXC	ANGEA	BLE)									
LAB	SAMPLE		ORGAN			HOSPHO	RUS		POTASS	IUM	MAGNE	SIUM	CALCI	UM	SODIL	JM	pl		CATION EXCHANGE	PERCEN	BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTIFICATIO	NC	L.O. I.	R	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BR/			К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	%
372					1:7 ppm RATE	1:7	ATE ppm	Р		RATE		RATE		RATE		RATE	рН 1:1	INDEX	C.E.C.	ĸ	Mg	Ca		Na
	ASS015-03-		percent k			ррп м	ATE ppm	NATE	ppm	NATE	ppm	NATE	ppm	NATE	ppm	NATE			meq/100g					
	ASS015-03-																							
	ASS015-03-																							
	ASS015-03-																							
	ASS015-03-																							
	ASS015-04-																							
	ASS015-04-																							
	ASS015-04-																							
	ASS015-04-																							
72625	ASS015-04-	15	_																					
LAB				NĬ	TRATE-N	(FIA)						SU	JLFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS	SOLUBL	.E
NUMBER	SURFAG	Œ			SUBSOIL 1			SUBSC	DIL 2			-	S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RATE	SALTS	
372		de				depth				epth	Total Ibs/A												mmhos/	
	ppm lbs/A	(ii		ppm	lbs/A	(in)	ppm	lbs/A		(in)		pp	m RAT	E p	om RAT	E pr	om RATE	ppm	RATE pp	om RATE	ppm	RATE	cm R	ATE
72615	2 2		-3								2													
72616	1		-6								1													
72617	1	6·									1													
72619		2 9-									2													
72620			15								2													
72621	3 3	3 0-									3													
72622	1 1		-6								1	1												
72623	1 1	l 6-	-9								1	1												
72624		2 9-	12								2													
72625	2 2	2 12-	15								2													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0085** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

LOWER PLATTE SOUTH NRD CHRIS WITTHUHN PO BOX 83581 LINCOLN NE 68501-3581 IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM ASS015

,

SOIL ANALYSIS REPORT

													AL AMMONI		TATE (EXCH	ANGEAI	BLE)										
LAB		AMPLE		GANIC			HOSPHO	RUS			POTASSI	UM	MAGNES	SIUM	CALCIU	JM	SODIU	M	pl		CATION EXCHANGE	PERCEN	T BASE SA	TURATIC	ON (C	OMPUTE	D)
NUMBER	IDENT	IFICATION	1 M	ATTER	(M/EAL	P ₁ K BRAY)	P ₂ (STRONG ² BR			ATE	К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%		%	%
372						1:7	1:7		Р										pH 1:1	INDEX	C.E.C.	к	Mg	Ca		Н	Na
				ent RATE	ppm	n RATE	ppm R	ATE	ppm R	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
72626	ASS01	15-05-03	3				- 1																				
72627	ASS01	15-05-06	6				- 1																				
72628	ASS01	15-05-09)																								
72629	ASS01	15-05-12	2																								
72630	ASS01	15-05-15	5																								
LAB					NITR	ATE-N (FIA)							S	ULFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	N EXC	(CESS LIME	SOLUBLE	
NUMBER		SURFACE			S	UBSOIL 1			S	UBSO	IL 2		T		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	RA	RATE	SALTS	
372	ppm	lbs/A	depth (in)	ppm		lbs/A	depth (in)	pp	om	lbs/A		pth in)	Total Ibs/A	pp	om RATE	i pj	om RATE		m RATE			om RATE		RATE	n	nmhos/ cm RA	TE
72626	4	4	0-3										4	·											Τ		
72627	1	1	3-6										1			L											
72628	1	1	6-9										1														
72629	1	1	9-12	2									1														
72630	1	1	12-1	5									1														

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days. In reports and letters are for the exclusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any referen

Pg. 12 of 21

LPSINKD Vadose zone sampling Program Challer Custoury		roi castody				
			(16)	Tests Requested	Lab #/Order #	Notes
	Date	Time	Matrix	Nitrate-N	(Internal Use)	
	11-19-2020	1003	Soil	×		
	1-19-2020	lood	Soil	×		
ASS014-04-09	11-19-2020	1005	Soil	×		
ASS014-04-12	11-19-2020	1000	Soil	X		
	11-19-2020	1007	Soil	X		
ASS014-05-03	11-19-2020	5201	Soil	X		
	11-19-2020	020	Soil	X		
ASS014-05-09	11-19.2020	1027	Soil	X		
ASS014-05-12	11-19-2020	820	Soil	X		
ASS014-05-15	11-19-2020	1029	Soil	X		
ASS015-01-03	11-19-2020	1339	Soil	X		
ASS015-01-06	11-19-2020	1340	Soil	X		
ASS015-01-09	11-19-2020	1341	Soil	X		
ASS015-01-12	11-19-2020	342	Soil	×		
ASS015-01-15	11-19-2020	1343	Soil	X		
ASS015-02-03	-19-202s	1941	Soil	×		
ASS015-02-06	0208-11-11	1402	Soil	X		
ASS015-02-09	0202-101-11	1403	Soil	X		18
ASS015-02-12	11-19-2020	hohl	Soil	X	3727	37272580 - 37272630
ASSO15-02-18 14 74	0000-61-11	IYOS	Soil	X		
ASS015-03-03	11-19-2020	1421	Soil	X		
ASS015-03-06	11-19-2020	2241	Soil	X		
ASS015-03-09	11-19-2020	1423	Soil	X		
ASS015-03-12	11-19-2020	1424	Soil	X		
ASS015-03-15	11-19-2020	1425	Soil	X		
ASS015-04-03	1-19-2020	1443	Soil	×		
ASS015-04-06	0202-61-11	hhh	Soil	X		
ASS015-04-09	1-19-2020	1445	Soil	X		
ASS015-04-12	11-19-2020	1446	Soil	X		
ASS015-04-15	11-10-21-11	1447	Soil	X		

2

÷

1.12

				Tests Requested	Lab #/Order #	Notes
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	
ASS015-05-03	11-19-2020	1500	Soil	X		
ASS015-05-06	11-19-2020	1507	Soil	×		
ASS015-05-09	0202-61-11	1508	Soil	×		
ASS015-05-12	11-19-2020	1509	Soil	X		
ASS015-05-15	11-19-2020	1510	Soil	X		
			Soil	X		
			Soil	X		
			Soil	×		
			Soil	X		200 3 回422 200 3 回422
			Soil	X	372	72580 - 37272630
			Soil	X	10	
			Soil	X		
			Soil	. X		and the state of the second
			Soil	X		
			Soil	X	and the second sec	
			Soil	X		
			Soil	X		picit and
			Soil	X		
			Soil	X		in her in the second
			Soil	X		
			Soil	X		
			Soil	X		
			Soil	Х		
			Soil	×		
			Soil	X	and the second	
			Soil	X		
			Soil	X		
			Soil	X		
			Soil	X		
			Coil	*		

Ø

REPORT NUMBER 20-330-0099 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS016

SOIL ANALYSIS REPORT

											NEUTR	AL AMMONI	UM ACE	TATE(EXCH	IANGEA	BLE)									
LAB		MPLE		GANIC			OSPHOR	US		POTASS	IUM	MAGNES	SIUM	CALCI	JM	SODIL	JM	p	i	CATION EXCHANGE	PERCEN	T BASE SA	TURATION	(COMPUT	ED)
NUMBER	IDENTIF	ICATION		TTER	P ₁ (WEAK BRA	w 10	P ₂ STRONG ² BRA		EN	К		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	%	%	% H	%
372				ent RATE	1:7 ppm R		1:7 ppm RA		Р		RATE		RATE		RATE		RATE	рН 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca		Na
72887	400010	01.00	-		ррпі к	AIL .	ррш кл	rc ppm	NAIL	ppm	NATE	ppm	NAIL	ppm	NAIL	ppm	NATE			meq/100g					
72888																									
72889																									
72890																									
72892							_																		
72893							_																		
72894							_																		
72895							_																		
72896							_																		
72897	ASS016	6-02-15																							
LAB				1	NITRATE	N (F	IA)						S	JLFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS LIME	JOLODI	
NUMBER		SURFACE			SUBSC	IL 1			SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	RATE TPA	SALTS	5
372	ppm	lbs/A	depth (in)	ppm	lbs/A		depth (in)	ppm	lbs//		epth (in)	lbs/A	рр	m RA1	E p	om RATI	E pj	om RATE	ppm	RATE p	om RATE	ppm	RATE	mmhos/ cm f	RATE
72887	1	1	0-3									1													
72888	1	1	3-6									1													
72889	1	1	6-9									1													
72890	1	1	9-12	2								1													
72892	1	1	12-15	5								1													
72893	2	2	0-3									2	2												
72894	2	2	3-6									2													
72895	1	1	6-9									1													
72896	2	2	9-12	2								2													
72897	1	1	12-15	5								1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0099 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS016

SOIL ANALYSIS REPORT

		_					NE	UTRAL AN	MMONIUM	ACETATE	(EXCHAN	NGEABL	.E)									
LAB	SAMPLE	ORGANIC		HOSPHOR	-		OTASSIUN	л MA	GNESIU	M C	ALCIUN	Л	SODIUN	М	р		CATION EXCHANGE	PERCEN	T BASE SAT	URATION	(COMPUT	ED)
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)	P_2 (STRONG ² BRAY	OLSEN	NATE	К		Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca	% H	% Na
372		percent RATE	1:7	1:7	P		ppm R	ATE p	opm RA	ATE p	pm l	RATE	ppm	RATE	1:1	INDEX	C.E.C. meq/100g	ĸ	ivig	Ca		INd
72898	ASS016-03-03																					
72899	ASS016-03-06										_											
72900	ASS016-03-09										_											
72901	ASS016-03-12										_											
	ASS016-03-15										_											
	ASS016-04-03										_											
	ASS016-04-06										_											
	ASS016-04-09										_											
	ASS016-04-12										_											
72907	ASS016-04-15										_											
LAB			NITRATE-N	(FIA)						SULFU	JR			MAN	GANESE	IRON	C	OPPER	BORON	LIME	JOLODL	
NUMBER	SURFACE		SUBSOIL	1		SUBSOI	_ 2	— т	otal	S ICAP			Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	PA RATE	SALTS	
372	ppm lbs/A	depth (in) ppm	lbs/A	depth (in)	ppm	lbs/A	depth (in)		bs/A	ppm	RATE	ppr	n RATE	ррі	m RATE	ppm	RATE pj	om RATE	ppm	RATE	mmhos/ cm R	ATE
72898	2 2	0-3							2													
72899		3-6							1													
72900		6-9							1													
72901		9-12							1													
72902		2-15							2													
72903		0-3							2													
72904		3-6							2													
72905		6-9							2													
72906		9-12							1													
72907	1 11	2-15							1													

REV.10/17

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0099 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **ASS016**

SOIL ANALYSIS REPORT

												NEUTF	AL AMMON	IUM ACE	TATE (EXCH	ANGEA	BLE)										
LAB		MPLE		GANIC			HOSPHO	RUS			POTASS	IUM	MAGNE	SIUM	CALCI	JM	SODI	UM	р		CATION EXCHANGE	PERCEN	T BASE SA	TURATIO	DN (C	OMPUTE	D)
NUMBER	IDENT	FICATION	1 M	ATTER	0.00	P ₁ EAK BRAY)	P ₂ (STRONG ² BR			JATE	К		Mg		Ca		Na	a	SOIL	BUFFER	CAPACITY	%	%	%		%	%
372						1:7	1:7		Р			DATE		DATE		DATE		DATE	pH 1:1	INDEX	C.E.C.	К	Mg	Ca		Н	Na
				cent RAT	E p	pm RATE	ppm R	AIE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g						
72908	ASS01	6-05-03	3						_																		
72909	ASS01	6-05-06	3				- 1																				
72910	ASS01	6-05-09)				- 1																				
72911	ASS01	6-05-12	2				- 1																				
72912	ASS01	6-05-15	5																								
LAB					NIT	RATE-N (FIA)						-	S	ULFUR		ZINC	MA	NGANESE	IRON	C	OPPER	BORON	N EXC	CESS S	OLUBLE	
NUMBER		SURFACE				SUBSOIL 1				SUBSC	DIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. D		ATE	SALTS 1:1	
372	ppm	lbs/A	depth (in)	pp	m	lbs/A	depth (in)	pp	om	lbs/A		epth (in)	lbs/A	p	om RAT	E p	pm RAT	TE p	pm RATE	ppm	RATE pr	om RATE	ppm	RATE		mhos/ cm RAT	ге
72908	3	3	0-3										3	3			_										
72909	1	1	3-6										1														
72910	1	1	6-9										1														
72911	1	1	9-1	2									1														
72912	1	1	12-1	5									1														

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

12 10 ci bil)						NOLES				49 1 EXE	,891,930	37272887 - 37272937									
	rict dy Form							1				20	Lab #/Order #	(Internal Use)						3727									
	Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form		South NRD	1	8501-3581	476-2729	Date/Time:	Date/Time:	Date/Time:	Date/Time:	Date/Time:	11/24/1	Tests Requested	Nitrate-N	×	X	X	×	X	X	X	X	X	X	X	X	X	X	X
	latte South N Sampling Pr	Dick Ehrman	Lower Platte South NRD	P.O. Box 83581	Lincoln, NE 68501-3581	Phone: (402) 476-2729	Da	Da	Da	Da	Da	D	L	Matrix N	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Lower P Vadose Zone	t & Bill To: 1			-									Time	SHO	09460	C400	8460	6490	10001	010	1011	1012	1013	1031	1032	1033	10 34	1035
		Report &										an 3r		Date	11-20-2020	0202-02-11		122-62-1	cra2-02-11	11-20-2024	11-20-2020	11-20-2020	0202-02-11	11-20-2020	11-20-2020	1-20-3020	0205-05-11	0202-02-11	0202-02-11
				Account #: 8722			Relinquished By (Signature):	Received By (Signature):	Relinquished By (Signature):	Received By (Signature):	Relinquished By (Signature):	Received By (Signature):		Sample #	ASS016-01-03	ASS016-01-06	ASS016-01-09	ASS016-01-12	ASS016-01-15	ASS016-02-03	ASS016-02-06	ASS016-02-09	ASS016-02-12	ASS016-02-15	ASS016-03-03	ASS016-03-06	ASS016-03-09	ASS016-03-12	ASS016-03-15

	e) Notes						-											1000	37979887 - 37272937											
Lab #/Order #	(Internal Use)								,	1	3	-					100	回 (105 801)	379798	01110										
Tests Requested	Nitrate-N	X	×	×	×	X	X	X	X	×	X	×	×	X	X	X	X	X	×	×	×	X	X	X	X	X	X	×	X	X
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil																
	Time	1052	1053	1054	1055	1050	117	8111	6111	11120	121	1053	1053	1054	1055	1050	0111	1117	8111	6111	1120	1143	(141	lius	11460	1147	1204	1205	12010	1207
	Date	11-20-2020	11-20-2020	1-20-2020	0292-02-11	11-20-2020	02-02-02-11	1-20-2120	\$202-02-11	0202-02-11	0202-02-11	0202-61-11	11-19-2020	11-19-2020	11-19-2020	1-19-2020	11-19-2020	11-19-2020	0202-61-11	11-19-2020	11-19-2020	0702-61-11	11-19-2020	11-19-2020	11-19-2020	11-19-2020	0202-61-11	0702-61-11	9202-61-11	0202-61-11
	Sample #	ASS016-04-03	ASS016-04-06	ASS016-04-09	ASS016-04-12	ASS016-04-15	ASS016-05-03	ASS016-05-06	ASS016-05-09	ASS016-05-12	ASS016-05-15	ASS017-01-03	ASS017-01-06	ASS017-01-09	ASS017-01-12	ASS017-01-15	ASS017-02-03	ASS017-02-06	ASS017-02-09	ASS017-02-12	ASS017-02-15	ASS017-03-03	ASS017-03-06	ASS017-03-09	ASS017-03-12	ASS017-03-25/4 71	ASS017-04-03	ASS017-04-06	ASS017-04-09	ASS017-04-12

LPSNRD Vadose Zone Sampling Program Chain-of Custody

v

p. 17 of 21

				Tests Requested	Lab #/Order #	
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	Notes
ASS017-05-03	11-19-2020	1228	Soil	×		
ASS017-05-06	11-19-2020	6721	Soil	×		
ASS017-05-09	0202-61-11	0521	Soil	×		
ASS017-05-12	0202-61-11	1231	Soil	×		
ASS017-05-15	11-19-2020	1232	Soil	×		

37272887 – 37272937

.

REPORT NUMBER 20-330-0100 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

www.midwestlabs.com

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS017

SOIL ANALYSIS REPORT

												NEUTR	AL AMMON	IUM ACE	TATE (EX	CHANG	EABLE)												
LAB		MPLE		GANIC		Pł	HOSPHO	DRUS	5		POTASS	IUM	MAGNE	SIUM	CAL	CIUM		SODIU	М	pl		CATION EXCHANGE	PERCEN	IT BAS	E SATU	RATION	(COMPL	JTED)	
NUMBER	IDENTI	FICATION		TTER	P ₁ (WEAK B		P ₂ (STRONG ² E	DAV)			К		Mg		0	la 🛛		Na		SOIL	BUFFER	CAPACITY	%	%		%	%		%
372					1:7		1:7		Р			DATE		DATE					DATE	pH 1:1	INDEX	C.E.C.	К	M	g	Ca	H		Na
				ent RATE	ppm	KATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	KA	TE	ppm	RATE			meq/100g							_
72913																													
72914																													
72915																													
72916																													
72917																													
72918																													
72919																													
72920	ASS01	7-02-09																											
72921	ASS01	7-02-12																											
72922	ASS01	7-02-15																											
LAB					NITRAT	E-N (FIA)							S	ULFUR		ZIN	١C	MAN	IGANESE	IRON		OPPER	BC	DRON	EXCES	SOLU	BLE	
NUMBER		SURFACE			SUBS					SUBS	OIL 2				S ICAP		Z			Mn dtpa	Fe DTPA		Cu dtpa	FOI	B RB. DTPA	RATE	SAL 1:1		
372			depth				depth					epth	Total Ibs/A				DI	FA									mmhos/		
	ppm	Ibs/A	(in)	ppm	lbs	A	(in)		ppm	lbs//	۹ I	(in)		pp	om R	ATE	ppm	RATE	pp	om RATE	ppm	RATE p	om RATI	E ppi	n RA	TE	cm	RATE	
72913		1	0-3																										
72914		1	3-6																										
72915	1	1	6-9																										
72916	1		9-12										1																
72917	1	1	12-15	5																									
72918		1	0-3										1																
72919	1	1	3-6										1																
72920	1	1	6-9										1																
72921	1	1	9-12	2									1																
72922	1	1	12-15	5									1																

REV.10/17

REPORT NUMBER 20-330-0100 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

www.midwestlabs.com

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS017

SOIL ANALYSIS REPORT

		_								NEUTR	AL AMMON	UM ACE	TATE (EXCH	ANGEA	BLE)									
LAB	SAMPLE	ORGANIC			HOSPHO	DRUS	5		POTASS	SIUM	MAGNE	SIUM	CALCI	JM	SODIU	M	р	i	CATION EXCHANGE	PERCEN	T BASE SAT	URATION	(COMPUTE	ED)
NUMBER	IDENTIFICATION	MATTER	(WE	P, AK BRAY)	P ₂ (STRONG ² E	RAY)	OLSE		K		Mg		Ca		Na		SOIL	BUFFER INDEX	CAPACITY	% K	% Mg	% Ca	% H	% Na
372		percent RAT		1:7 om RATE	1:7	ŕ	P	RATE		DATE	ppm	RATE	ppm	RATE	ppm	RATE	pH 1:1	INDEA	C.E.C. meq/100g	ĸ	ivig	Ca	п	INd
	ASS017-03-03	percent fixin			ррп		ppm	INTE	ррш		ppm	INATE	ppm	INAIL	ppin	INTE			meq/100g					
	ASS017-03-05																							
	ASS017-03-00																							
	ASS017-03-09																							
	ASS017-03-12																							
	ASS017-03-14 ASS017-04-03																							
	ASS017-04-06																							
	ASS017-04-09																							
	ASS017-04-12																							
	ASS017-05-03																							
LAB			NITE	RATE-N (FIA)							S	ULFUR		ZINC	MAN	IGANESE	IRON		OPPER	BORON	EXCESS	SOLUBL	E
NUMBER	SURFACE			SUBSOIL 1	, .,			SUBS	OIL 2			-	S		Zn		Mn	Fe		Cu	В	RATE	SALTS	
372		depth			depth				d	epth	Total Ibs/A		ICAP		DTPA		DTPA	DTPA		DTPA	SORB. DT	PA	1:1 mmhos/	
	ppm Ibs/A	(in) ppr	n	lbs/A	(in)		ppm	lbs/A	4	(in)	-	pp	om RAT	E p	om RATE	Е рр	m RATE	ppm	RATE p	om RATE	ppm	RATE	cm R/	ATE
72923		0-3									1													
72924		3-6																						
72925		6-9																						
72926		9-12																						
72927		2-14									 1													
72928		0-3									 1													
72929		3-6																						
72931		6-9									 1													
72932 72933		9-12 0-3									 1													
12933		0-3																						

REV.10/17

REPORT NUMBER 20-330-0100 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

www.midwestlabs.com

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS017

SOIL ANALYSIS REPORT

			_										NEUTR	AL AMMON	UM ACE	TATE(EXCH/	ANGEAE	BLE)				-	_				
LAB	SA	MPLE		ORGAN	-		Pł	HOSPH	ORUS	5		POTASS	SIUM	MAGNE	SIUM	CALCIU	M	SODIU	М	pl	Н	CATION EXCHANGE	PERCEN	T BASE SAT	URATION	(COMPUTE	ED)
NUMBER	IDENTI	FICATION	1 1	MATT	ER	(WEAK B	-	P ₂		OLSE	N	К		Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
372				L.O.		1:7		1:7		P										pH 1:1	INDEX	C.E.C.	к	Mg	Ca	Н	Na
				ercent	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
72934	ASS01	7-05-06	5																								
72935	ASS01	7-05-09)																								
72936	ASS01	7-05-12	2																								
72937	ASS01	7-05-15	5																								
LAB					N	IITRAT	E-N (FIA)						1	S	JLFUR		ZINC		GANESE	IRON	C	OPPER	BORON	LIME	SOLUBLE	
NUMBER		SURFACE				SUB	SOIL 1				SUBSO	DIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DT	PA	SALTS	
372	ppm	lbs/A	dept (in)		ppm	lbs	/A	depth (in)		ppm	lbs/A		lepth (in)	lbs/A	pp	m RATE	pp	om RATE	ppi	m RATE	ppm	RATE pp	m RATE	ppm l	RATE	mmhos/ cm RA	ATE
72934	1	1	3-	6										1													
72935	2	2	6-9	9										2	2		L		L								
72936	3	3	9-1	12										3			L		L								
72937	3	3	12-	15										3													
I						1								1	1												

REV.10/17

12 10 ci bil							Mai (FF))						NOLES				49 1 EXE	,891,930	37272887 - 37272937									
	rict dy Form							1				20	Lab #/Order #	(Internal Use)						3727									
	Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form		South NRD	1	8501-3581	476-2729	Date/Time:	Date/Time:	Date/Time:	Date/Time:	Date/Time:	11/24/1	Tests Requested	Nitrate-N	×	X	X	×	X	X	X	X	X	X	X	X	X	X	X
	latte South N Sampling Pr	Dick Ehrman	Lower Platte South NRD	P.O. Box 83581	Lincoln, NE 68501-3581	Phone: (402) 476-2729	Da	Da	Da	Da	Da	D	L	Matrix N	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Lower P Vadose Zone	t & Bill To: 1			-									Time	SHO	09460	C400	8460	6490	10001	010	1011	1012	1013	1031	1032	1033	10 34	1035
		Report &										an 3r		Date	11-20-2020	0202-02-11		122-62-1	cra2-02-11	11-20-2024	11-20-2020	0202-202-11	0202-02-11	11-20-2020	11-20-2020	1-20-3020	0205-05-11	0202-02-11	0202-02-11
				Account #: 8722			Relinquished By (Signature):	Received By (Signature):	Relinquished By (Signature):	Received By (Signature):	Relinquished By (Signature):	Received By (Signature):		Sample #	ASS016-01-03	ASS016-01-06	ASS016-01-09	ASS016-01-12	ASS016-01-15	ASS016-02-03	ASS016-02-06	ASS016-02-09	ASS016-02-12	ASS016-02-15	ASS016-03-03	ASS016-03-06	ASS016-03-09	ASS016-03-12	ASS016-03-15

	e) Notes						-											1000	37979887 - 37272937											
Lab #/Order #	(Internal Use)								,	1	3	-			_		100	回 (105 801)	379798	01110										
Tests Requested	Nitrate-N	X	×	×	×	X	X	X	×	×	X	×	×	X	X	X	X	X	×	×	×	X	X	X	X	X	X	×	X	X
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil																
	Time	1052	1053	1054	1055	1050	117	8111	6111	11120	1211	1053	1053	1054	1055	1050	0111	1117	8111	6111	1120	1143	(141	lius	11460	1147	1204	1205	12010	1207
	Date	11-20-2020	11-20-2020	1-20-2020	0292-02-11	11-20-2020	02-02-02-11	1-20-2120	\$202-02-11	0202-02-11	0202-02-11	0202-61-11	11-19-2020	11-19-2020	11-19-2020	1-19-2020	11-19-2020	11-19-2020	0202-61-11	11-19-2020	11-19-2020	0702-61-11	11-19-2020	11-19-2020	11-19-2020	11-19-2020	0202-61-11	0702-61-11	9202-61-11	0202-61-11
	Sample #	ASS016-04-03	ASS016-04-06	ASS016-04-09	ASS016-04-12	ASS016-04-15	ASS016-05-03	ASS016-05-06	ASS016-05-09	ASS016-05-12	ASS016-05-15	ASS017-01-03	ASS017-01-06	ASS017-01-09	ASS017-01-12	ASS017-01-15	ASS017-02-03	ASS017-02-06	ASS017-02-09	ASS017-02-12	ASS017-02-15	ASS017-03-03	ASS017-03-06	ASS017-03-09	ASS017-03-12	ASS017-03-25/4 71	ASS017-04-03	ASS017-04-06	ASS017-04-09	ASS017-04-12

LPSNRD Vadose Zone Sampling Program Chain-of Custody

v

p. 17 of 21

				Tests Requested	Lab #/Order #	
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	Notes
ASS017-05-03	11-19-2020	1228	Soil	×		
ASS017-05-06	11-19-2020	6721	Soil	×		
ASS017-05-09	0202-61-11	0521	Soil	×		
ASS017-05-12	0202-61-11	1231	Soil	×		
ASS017-05-15	11-19-2020	1232	Soil	×		

37272887 – 37272937

.

REPORT NUMBER 20-330-0095 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **ASS019**

SOIL ANALYSIS REPORT

			-				N	EUTRAL AM	MONIUM AC	ETATE (EXC	HANGEAE	BLE)										
LAB	SAMPLE	ORGANIC		HOSPHOR	US	PC	DTASSIU	M MAG	GNESIUM	CALC	UM	SODIL	JM	pl		CATION EXCHANGE	PERCEN	T BASE SA	TURATIC	ON (CO	DMPUTED	D)
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)		Y) BICARBON	ATE	К		Mg	Ca	1	Na		SOIL	BUFFER	CAPACITY	% K	%	%		%	%
372		percent RATE	1:7	1:7	TE ppm R			RATE pp	m RATE		RATE		RATE	рН 1:1	INDEX	C.E.C. meq/100g	ĸ	Mg	Ca		н	Na
	ASS019-01-03	percent KATE		ррп ки	пе ррпп к.	ATE	ppm F	RATE pp		ppm	NATE	ppm	NATE			meq/100g						
							_															
	ASS019-01-06						_															
	ASS019-01-09						_															
	ASS019-01-12						_															
	ASS019-01-15						_															
	ASS019-02-03						_															
	ASS019-02-06						_															
	ASS019-02-09						_															
	ASS019-02-12						_															
72794	ASS019-02-15																					
LAB			NITRATE-N	(FIA)						SULFUR	T	ZINC	MAN	IGANESE	IRON	C	OPPER	BOROI	N EX	IME	OLUBLE	
	SURFACE		NITRATE-N SUBSOIL		S	UBSOIL	2	То		SULFUR S ICAP	T	ZINC Zn DTPA		IGANESE Mn DTPA	IRON Fe DTPA		OPPER Cu DTPA	BOROI B SORB. D	N LI R/		OLUBLE SALTS 1:1	
LAB	SURFACE	depth	SUBSOIL	1 depth			dept		tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372*	SURFACE	depth (in) ppm	SUBSOIL	1		UBSOIL Ibs/A	1	h lbs	tal s/A	S		Zn		Mn dtpa	Fe DTPA		Cu	B SORB. D	N LI R/	IME ATE mm	SALTS 1:1	
LAB NUMBER *372* 72785	SURFACE	depth (in) ppm 0-3	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72786	SURFACE ppm lbs/A 1 1 1 1	depth (in) ppm 0-3 3-6	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72786 72787	SURFACE ppm lbs/A 1 1 1 1 1 1 1 1	depth (in) ppm 0-3 3-6 6-9	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72785 72786 72787 72788	SURFACE ppm lbs/A I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9	depth (in) ppm 0-3 3-6 6-9 9 0-12 9	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72785 72786 72787 72788 72789	SURFACE ppm lbs/A 1 1 1 1 1 1 1 1 1 1 2 2	depth (in) ppm 0-3 3-6 6-9 -9 0-12 2-15	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72786 72787 72788 72789 72789 72790	SURFACE ppm Ibs/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1	depth (in) ppm 0-3 3-6 6-9 -12 2-15 0-3	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72786 72787 72787 72788 72789 72790 72791	SURFACE ppm lbs/A 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1	depth (in) ppm 0-3 3-6 6-9 -12 2-15 -3 3-6 -3	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72785 72786 72787 72788 72789 72790 72791 72792	SURFACE ppm Ibs/A 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	depth (in) ppm 0-3 3-6 6-9 -12 2-15 0-3 3-6 6-9	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	
LAB NUMBER *372* 72785 72786 72787 72787 72788 72789 72790 72791	SURFACE ppm Ibs/A 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	depth (in) ppm 0-3 3-6 6-9 -12 2-15 -3 3-6 -3	SUBSOIL	1 depth			dept	h lbs	tal s/A	S ICAP		Zn DTPA		Mn dtpa	Fe DTPA		Cu DTPA	B SORB. D	U R∕ TPA	IME ATE mm	SALTS 1:1 mhos/	

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER 20-330-0095 COMPLETED DATE ACCOUNT Nov 28, 2020 RECEIVED DATE 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS019

SOIL ANALYSIS REPORT

ODIUM PH CATION PERCENT BASE SATURATION (COMPUTED)
EXCHANGE
Na SOIL BUFFER CAPACITY % % % % %
1:1
C MANGANESE IRON COPPER BORON DICESS SOLUBLE
Mn Fe Cu B _{RATE} SALTS
mmhos/
RATE ppm RATE ppm RATE ppm RATE ppm RATE cm RATE
A

REV.10/17

REPORT NUMBER 20-330-0095 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **ASS019**

LINCOLN NE 68501-3581

SOIL ANALYSIS REPORT

													NEUT	RAL AMMC	NIUM AC	ETATE (EX	CHANG	EABLE))					-					
LAB		MPLE		RGA			PI	HOSPH	ORU:	Ş		POTAS	SIUM	MAGN	ESIUM	CAL	CIUM		SODIUI	М	pl		CATION EXCHANGE	PERCEN	IT BASE S	ATURAT	FION (COMPUT	ED)
NUMBER	IDENTI	FICATION	1 V	L.O.		P1 (WEAK		P ₂ (STRONG			N ONATE	1	<	M	g		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%		%	%
372						1:2	7	1:7		F)		DATE		DATE					DATE	pH 1:1	INDEX	C.E.C.	К	Mg	Ca	a	Н	Na
				ercent	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	KA	NTE	ppm	RATE			meq/100g						
72805	ASS01	9-05-03	3																										
72806	ASS01	9-05-06	6																										
72807	ASS01	9-05-09	Ð																										
72808	ASS01	9-05-12	2																										
72809	ASS01	9-05-15	5																										
LAB					N	ITRAT	Έ-Ν (FIA)								SULFUR			NC	MAN	GANESE	IRON	0	OPPER	BORC	N	EXCESS LIME	SOLUBL	
NUMBER		SURFACE				SUB	SOIL 1				SUBS	OIL 2		Total		S ICAP			Zn _{FPA}		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. I	OTPA	RATE	SALTS	
372	ppm	lbs/A	deptł (in)		ppm	lb	s/A	depth (in)		ppm	lbs/		depth (in)	lbs/A			ATE	ppm			m RATE			om RATE		RATE		mmhos/	ATE
72805	2	2	0-3	3											2														
72806	1	1	3-6	5											1														
72807	1	1	6-9	9											1					L									
72808	1	1	9-1	2											1														
72809	1	1	12-1	15											1														

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

17 10 01 .6d			7										835					-				
pg.			SO) EBU	2		Notos	0000	-				813	37272785-37272835									
	ct y Form					Lab #/Order #	(Internal Use)		_				372									
	Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form t & Bill To: Dick Ehrman	(D 31 9			02/62/	Tests Requested																
	n Natural R Program Cl n	Lower Platte South NRD P.O. Box 83581 Lincoln, NE 68501-3581 Phone: (402) 476-2729	Date/Time: Date/Time:	Date/Time: Date/Time:	Date/Time:_ Date/Time:_	Tests Re	Nitrate-N	X	×	×	Х	Х	X	Х	X	Х	×	X	Х	X	Х	X
	Platte South e Sampling P Dick Ehrman	Lower Platte Sc P.O. Box 83581 Lincoln, NE 689 Phone: (402) 4	ΤĪ	11	Н		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Lower F Vadose Zone Report & Bill To: 1						Time	1521	1528	1529	1530	1531	IS48	Isyg	1550	1551	1552	1606	1607	1608	1009	1610
	Repor				MAZ		Date	11-19-2020	11-19-2020	11-19-2020	1-19-2020	11-19-2020	0207-51-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	0208-61-11	11-19-2020
		Account #: 8722	Relinquished By (Signature): Received By (Signature):	Relinquished By (Signature): Received By (Signature):	Relinquished By (Signature):		Sample #	ASS019-01-03 •		ASS019-01-09	ASS019-01-12	ASS019-01-15	ASS019-02-03	ASS019-02-06 •	ASS019-02-09 •	ASS019-02-12 •	ASS019-02-15	ASS019-03-03	 ASS019-03-06 	ASS019-03-09 •	ASS019-03-12 •	ASS019-03-15

martine in

1

1.2

				Tests Requested	Lab #/Order #	Notes
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	
ASS019-04-03	11-19-2020	h20)1	Soil	X		
ASS019-04-06	0202-61-11	1625	Soil	Х		
ASS019-04-09	1-19-2020	1026	Soil	X		
ASS019-04-12	11-19-2620	11027	Soil	X		
ASS019-04-15	1-19-2020	1628	Soil	X		
ASS019-05-03	11-19-2020	loys	Soil	X		
ASS019-05-06	0202-61-11	164C	Soil	X		
ASS019-05-09	11-19-2020	11047	Soil	Х		
ASS019-05-12	11-19-2020	1648	Soil	X		
ASS019-05-15	11-19-2020	1049	Soil	X		
ASS020-01-03	020-2020	Hogy	Soil	X		
ASS020-01-06	0202-02-11	1605	Soil	X		
ASS020-01-09	1-20-2020	1000	Soil	X		
ASS020-01-12	11-20-2000	1007	Soil	X		
ASS020-01-15	11-20-2020	1008	Soil	×		
ASS020-02-03	0202-02-11	1201	Soil	X		•
ASS020-02-06	11-20-2020	2201	Soil	X		-
ASS020-02-09	11-20-2020	11023	Soil	×	3727278	37272785-37272835
ASS020-02-12	11-20-2020	129	Soil	X		
ASS020-02-15	0202-02-11	1025	Soil	×	4	
ASS020-03-03	0202-02-11	1636	Soil	X		
ASS020-03-06	11-20-2020	1637	Soil	X		
ASS020-03-09	11-20-2020	1038	Soil	×		
ASS020-03-12	0202-02-11	1039	Soil	X		
ASS020-03-15	0200-00-11	0401	Soil	X	10	
ASS020-04-03	0202-02-1	1049	Soil	X		
ASS020-04-06	11-20-2320	1050	Soil	×		
ASS020-04-09	11-20-2020	1051	Soil	×		
ASS020-04-12	11-20-202-11	1052	Soil	×		
ASS020-04-15	11-20-767K	11053	Soil	×		

.

19 of 21

in the second se

2

				Tests Requested	Lab #/Order #	Notac
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	MOICO
ASS020-05-03	1-20-2020	holl	Soil	X		
ASS020-05-06	0202-02-11	1705	Soil	X		
ASS020-05-09	11-20-2020	1706	Soil	X		
ASS020-05-12	11-20-2020	LOLI	Soil	X		
ASS020-05-15	1120-2020	1708	Soil	Х		

37272785-37272835

REPORT NUMBER 20-330-0096 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

www.midwestlabs.com

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM

ASS020

SOIL ANALYSIS REPORT

										AL AMMON														
LAB	SAMPLE	ORG			HOSPHO			POTASS	IUM	MAGNE		CALCI	JM	SODIU		р		CATION EXCHANGE		BASE SAT	· · · · · ·			,
NUMBER	IDENTIFICATION		1EK D. I.	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BR	AY) BICARI	EN BONATE	К		Mg		Ca		Na		SOIL pH	BUFFER INDEX	CAPACITY C.E.C.	% K	% Mg	% Ca		% H	% Na
372			t RATE	1:7	1:7		P RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	1:1	INDLX	meq/100g	ĸ	Wig	Ca			ING
	ASS020-01-0		C IVIL	ppm mm	ppin in	nie ppin	TUTE	ppm	TUTE	ppm	TUTE	ppm	TUTE	ppin	TUTE			meq/100g					_	
	ASS020-01-0																							
	ASS020-01-00																							
	ASS020-01-0																							
	ASS020-01-12 ASS020-01-1																							
	ASS020-01-18 ASS020-02-08																							
	ASS020-02-00 ASS020-02-00																							
	ASS020-02-00 ASS020-02-09																							
	ASS020-02-03 ASS020-02-12																							
	ASS020-02-12 ASS020-02-1																							
	A33020-02-18														1									
			<u>۱</u>	NITRATE-N		1	CLIDCO			1	- ^{SI}	ULFUR S		ZINC Zn	MAN	GANESE Mn	IRON Fe	C	OPPER Cu	BORON	LIN RA		ALTS	
NUMBER	SURFACE			SUBSOIL	1		SUBSO			Total		ICAP		DTPA		DTPA	DTPA		DTPA	SORB. DI			1:1	
372	ppm lbs/A	depth (in)	ppm	lbs/A	depth (in)	ppm	Ibs/A		epth in)	lbs/A	рр	m RATI	E p	om RATE	е рр	m RATE	ppm	RATE pr	om RATE	ppm	RATE	mml cr		E
72810	1 1	0-3								1														
72811	1 1	3-6								1														
72812	1 1	6-9								1														
72814	1 1	9-12								1														
72815	1 1	12-15								1														
72816	1 1	0-3								1	1													
72817	1 1	3-6								1														
72818	1 1	6-9								1	1													
72819	1 1	9-12								1	1													
72820	1 1	12-15								1														

REV.10/17

REPORT NUMBER 20-330-0096 COMPLETED DATE ACCOUNT Nov 28, 2020 8722 Nov 24, 2020

LOWER PLATTE SOUTH NRD **CHRIS WITTHUHN** PO BOX 83581 LINCOLN NE 68501-3581

IDENTIFICATION VADOSE ZONE SAMPLING PROGRAM **ASS020**

SOIL ANALYSIS REPORT

							N	UTRAL AMM	ONIUM ACE	TATE(EXCHA	ANGEAB	BLE)			-					
LAB	SAMPLE	ORGANIC		HOSPHOR	-		POTASSIUI		NESIUM	CALCIU	М	SODIUI		pН	CATION EXCHANGE	PERCENT	F BASE SA	1	I (COMPUT	,
NUMBER	IDENTIFICATION	MATTER	P ₁ (WEAK BRAY)	P ₂ (STRONG ² BRA) BICARBO		К		Иg	Ca		Na	SC p		CAPACITY	% K	% Mg	% Ca	% H	% Na
372		percent RATE	1:7	1:7	P		ppm R	ATE ppn	RATE	0000	RATE	ppm	RATE P		C.E.C. meq/100g	ĸ	ivig	Ca		INd
	ASS020-03-03	percent KAIL		ррп ка	it ppm	NAIL	ррп к	AIL ppi	NAIL	ppm	NAIL	ppm	NAIL		meq/100g					
	ASS020-03-03 ASS020-03-06																			
	ASS020-03-08																			
	ASS020-03-12																			
	ASS020-03-15																			
	ASS020-04-03																			
	ASS020-04-06 ASS020-04-09																			
	ASS020-04-12																			
72030	ASS020-04-15						_													
LAB			NITRATE-N						S	ULFUR S		ZINC Zn	MANGAN Mn		N C	COPPER Cu	BORON	LIM	JOLODE	
NUMBER	SURFACE		SUBSOIL	1		SUBSOI	L2	Tota	1	ICAP		DTPA	DTPA			DTPA	D SORB. DI	RATI TPA	SALTS	
372							depth													
	ppm lbs/A	depth (in) ppm	lbs/A	depth (in)	ppm	lbs/A	(in)	ı lbs/	p	om RATE	рр	om RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE	mmhos/ cm F	ATE
72821	2 2		lbs/A		ppm	lbs/A		i IDS/	2 pr	om RATE	pp	om RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE		ATE
72821 72822	lele	(in) ppm	Ibs/A		ppm	lbs/A		IDS/	p	om RATE	рр	om RATE	ppm	RATE ppm	RATE p	ipm RATE	ppm	RATE		ATE
72822 72823	2 2 3 3 3 3	(in) ppm	Ibs/A		ppm	lbs/A		IDS/	2 3 3	om RATE	pp	om RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE		ATE
72822	2 2 3 3 3 3 3 3 3 3	(in) ppm 0-3 3-6	Ibs/A		ppm	lbs/A		IDS/	2 3 3 3 3	om RATE	qq	om RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE		ATE
72822 72823 72824 72825	2 2 3 3 3 3 3 3 3 3 3 3 3 3	(in) ppm 0-3 - 3-6 - 6-9 -	Ibs/A		ppm	lbs/A		1 IDS/	2 3 3 3 3 3 3	om RATE	pp	m RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE		ATE
72822 72823 72824 72825 72826	2 2 3 3 3 3 3 3 3 3 3 3 1 2 2	(in) ppm 0-3 3-6 6-9 9-12	lbs/A		ppm	lbs/A			2 3 3 3 3 3 3 2	om RATE	pp	om RATE	ppm	RATE ppm	RATE p	ipm RATE	ppm	RATE		ATE
72822 72823 72824 72825 72826 72827	2 2 3 3 3 3 3 3 3 3 1 2 2 3 3	(in) ppm 0-3 3-6 6-9 9-12 2-15	Ibs/A		ppm	Ibs/A		1 105/	2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	om RATE	pp	om RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE		ATE
72822 72823 72824 72825 72826	2 2 3 3 3 3 3 3 3 3 1 2 2 3 3	(in) ppm 0-3 3-6 6-9 9-12 2-15 0-3	lbs/A		ppm	Ibs/A		1 105/	2 3 3 3 3 3 2 3 2 3 2 2	om RATE	pp	om RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE		ATE
72822 72823 72824 72825 72826 72827	2 2 3 3 3 3 3 3 3 3 1 2 2 3 3 2 2 2 2	(in) ppm 0-3 3-6 6-9 9-12 2-15 0-3 3-6	Ibs/A		ppm	Ibs/A		1 125/	2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	om RATE	pp	om RATE	ppm	RATE ppm	RATE p	pm RATE	ppm	RATE		ATE

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

REPORT NUMBER **20-330-0096** COMPLETED DATE Nov 28, 2020 RECEIVED DATE Nov 24, 2020

CHRIS WITTHUHN

LINCOLN NE 68501-3581

PO BOX 83581

20 www.midwestlabs.com IOWER PLATTE SOUTH NRD VADOSE ZONE SAMPLIN

VADOSE ZONE SAMPLING PROGRAM ASS020

SOIL ANALYSIS REPORT

											NEUTR	AL AMMON	IUM ACE	TATE (EXCH	ANGEAE										
LAB		AMPLE		GANIC		Pł	HOSPHOR	US		POTAS	SIUM	MAGNE	SIUM	CALCIU	M	SODIUN	N	pl		CATION EXCHANGE	PERCENT	BASE SA	FURATION	(COMPUT	ED)
NUMBER	IDENT	IFICATION	1 M	ATTER	P (WEAK		P ₂ (STRONG ² BRA		EN	К	C	Mg		Ca		Na		SOIL	BUFFER	CAPACITY	%	%	%	%	%
372					1	:7	1:7		Р									pH 1:1	INDEX	C.E.C.	К	Mg	Ca	Н	Na
				cent RATE	ppm	RATE	ppm RA	TE ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE			meq/100g					
72831	ASS02	20-05-03	3																						
72832	ASS02	20-05-06	6				-																		
72833	ASS02	20-05-09)																						
72834	ASS02	20-05-12	2																						
72835	ASS02	20-05-15	5																						
LAB					NITRA	TE-N (FIA)						SI	JLFUR		ZINC	MAN	IGANESE	IRON	C	OPPER	BORON	EXCESS LIME	SOLUBL	
NUMBER		SURFACE			SU	BSOIL 1			SUBS	OIL 2		Total		S ICAP		Zn dtpa		Mn dtpa	Fe DTPA		Cu dtpa	B SORB. DI	RATE	SALTS	
372	ppm	lbs/A	depth (in)	ppm		bs/A	depth (in)	ppm	lbs/A		depth (in)	Ibs/A	рр								om RATE		RATE	mmhos/	ATE
72831	1	1	0-3									1													
72832	1	1	3-6	;								1			L										
72833	2	2	6-9									2	2		L										
72834	2	2	9-1	2								2	2												
72835	2	2	12-1	5								2	2												

The above analytical results apply only to the sample(s) submitted. Samples are retained a maximum of 30 days.

pg. 10 01 21			7						-				835					-				
- 6d			SO) EBU	2		Notor	10100	-				813	37272785-37272835									
	ct V Form					Lab #/Order #	(Internal Use)		-				372									
	Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form t & Bill To: Dick Ehrman	0) 31 9			02/62/	Tests Requested																
	n Natural R Program C n	Lower Platte South NRD P.O. Box 83581 Lincoln, NE 68501-3581 Phone: (402) 476-2729	Date/Time: Date/Time:	Date/Time: Date/Time:	Date/Time:_ Date/Time:_	Tests Re	Nitrate-N	X	×	×	Х	Х	X	Х	X	Х	×	×	Х	X	Х	X
	Platte South e Sampling P Dick Ehrman	Lower Platte Sc P.O. Box 83581 Lincoln, NE 689 Phone: (402) 4	ΤĪ	11	Н		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Lower P Vadose Zone Report & Bill To: 1						Time	1521	1528	1529	1530	153	Isy8	Isyg	1550	1551	1552	1606	1607	1608	1009	11010
	Repor				MAZ		Date	11-19-2020	11-19-2020	11-19-2020	1-19-2020	11-19-2020	0207-51-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	0202-61-11	11-19-2020	11-19-2020
		Account #: 8722	Relinquished By (Signature): Received By (Signature):	Relinquished By (Signature):	Relinquished By (Signature): Received By (Signature):		Sample #	ASS019-01-03 •		ASS019-01-09	ASS019-01-12	ASS019-01-15	ASS019-02-03	ASS019-02-06 •	ASS019-02-09	ASS019-02-12 •	ASS019-02-15	 ASS019-03-03 	 ASS019-03-06 	ASS019-03-09 •	ASS019-03-12 •	ASS019-03-15

martine in

1

1.2

				Tests Requested	Lab #/Order #	Notes
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	
ASS019-04-03	11-19-2020	1624	Soil	X		
ASS019-04-06	0202-61-11	1625	Soil	X		
ASS019-04-09	0202-61-11	1626	Soil	X		State of the second sec
ASS019-04-12	11-19-2620	11027	Soil	X		
ASS019-04-15	1-19-2020	1628	Soil	X		
ASS019-05-03	11-19-2020	loys	Soil	X		
ASS019-05-06	0202-61-11	164C	Soil	X		
ASS019-05-09	11-19-2020	11047	Soil	Х		
ASS019-05-12	11-19-2020	1648	Soil	X		
ASS019-05-15	11-19-2020	1049	Soil	X		
ASS020-01-03	-20-2020	Hogy	Soil	X		
ASS020-01-06	0202 -02-11	1605	Soil	X		
ASS020-01-09	1-20-2020	1000	Soil	X		
ASS020-01-12	11-20-2000	1007	Soil	X		
ASS020-01-15	11-20-2020	11008	Soil	×		
ASS020-02-03	0202-02-11	1201	Soil	X		•
ASS020-02-06	11-20-2020	2201	Soil	X		-
ASS020-02-09	11-20-2020	11023	Soil	×	3727278	37272785-37272835
ASS020-02-12	11-20-2020	129	Soil	X		
ASS020-02-15	0202-02-11	1025	Soil	×	4.	
ASS020-03-03	11-20-2020	1636	Soil	X		
ASS020-03-06	11-20-2020	1637	Soil	X		
ASS020-03-09	11-20-2020	1038	Soil	×		
ASS020-03-12	0202-02-11	1039	Soil	X		
ASS020-03-15	0202-02-11	1040	Soil	X		
ASS020-04-03	0202-02-1	1049	Soil	X		
ASS020-04-06	0202-02-11	0501	Soil	×		
ASS020-04-09	11-20-2020	1051	Soil	×		
ASS020-04-12	11-20-202-11	1052	Soil	×		
ASS020-04-15	11-20-767K	11053	Soil	×		

.

19 of 21

in the second se

2

				Tests Requested	Lab #/Order #	Notac
Sample #	Date	Time	Matrix	Nitrate-N	(Internal Use)	
ASS020-05-03	1-20-2020	holl	Soil	X		
ASS020-05-06	0202-02-11	1705	Soil	X		
ASS020-05-09	11-20-2020	1706	Soil	X		
ASS020-05-12	11-20-2020	LOLI	Soil	X		
ASS020-05-15	1120-2020	1708	Soil	Х		

37272785-37272835

Work Order: 1566879

23 December 2020

CHRIS WITTHUHN LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 RE: Nitrate Only/Irrigation Wells

Enclosed are the results of analyses for samples received by the laboratory on 2020-12-16 11:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Seather Ramig

Heather Ramig Project Manager hramig@midwestlabs.com

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581

Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

	ANALYTICAL REPORT FO	R SAMPLES		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
	Redacted	text		
AGW011	1566879-09	Aqueous	2020-12-07 10:56	2020-12-16 11:00
AGW012	1566879-10	Aqueous	2020-12-13 09: 2	2020-12-16 11:00
AGW013	1566879-11	Aqueous	2020-12-09 11:31	2020-12-16 11:00
AGW01	1566879-12	Aqueous	2020-12-07 15:06	2020-12-16 11:00
AGW015	1566879-13	Aqueous	2020-12-09 10:03	2020-12-16 11:00
AGW016	1566879-1	Aqueous	2020-12-08 11:39	2020-12-16 11:00
AGW017A	1566879-15	Aqueous	2020-12-07 16:1	2020-12-16 11:00
AGW018	1566879-16	Aqueous	2020-12-08 13:56	2020-12-16 11:00
AGW019	1566879-17	Aqueous	2020-12-08 10:06	2020-12-16 11:00
AGW020	1566879-18	Aqueous	2020-12-08 17:02	2020-12-16 11:00
AGW021	1566879-19	Aqueous	2020-12-07 13:39	2020-12-16 11:00
AGW017B	1566879-20	Aqueous	2020-12-08 16:06	2020-12-16 11:00
GWDUP-1	1566879-21	Aqueous	2020-12-09 09:02	2020-12-16 11:00
GWDUP-2	1566879-22	Aqueous	2020-12-091:9	2020-12-16 11:00

The result(s) issued on this report only reflect the analysis of the sample(s) submitted. For applicable test parameters, Midwest Laboratories is in compliance with NELAC requirements. Our reports and letters are for the e clusive and confidential use of our clients and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization.

Page 2 of 31

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
PO BOX 83581		Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	2020-12-23 16:41

Containers used for the following analyses:

	1566879-01 A:	EPA 353.2
	1566879-02 A:	EPA 353.2
	1566879-03 A:	EPA 353.2
	1566879-04 A:	EPA 353.2
	1566879-05 A:	EPA 353.2
	1566879-06 A:	EPA 353.2
#	1566879-07 A:	EPA 353.2
	1566879-08 A:	EPA 353.2
	1566879-09 A:	EPA 353.2
	1566879-10 A:	EPA 353.2
	1566879-11 A:	EPA 353.2
	1566879-12 A:	EPA 353.2
	1566879-13 A:	EPA 353.2
	1566879-14 A:	EPA 353.2
	1566879-15 A:	EPA 353.2
	1566879-16 A:	EPA 353.2
	1566879-17 A:	EPA 353.2
	1566879-18 A:	EPA 353.2
	1566879-19 A:	EPA 353.2
	1566879-20 A:	EPA 353.2
	1566879-21 A:	EPA 353.2
	1566879-22 A:	EPA 353.2

Note: Indicates container was received outside the acceptable pH range and was preserved at the laboratory.

Analysis Results Reviewed by:

EPA 353.2 reviewed by jdb5.

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581

Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581

Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

Redacted text

Page 7 of 31

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581

Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

Redacted text

Page 9 of 31

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

Redacted text

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported 2020-12-23 16: 1

Redacted text

	LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
	PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
I		Sample ID: AGW011	

Sample ID: AGW011 Laboratory ID: 1566879-09 Sampled Date/Time: 2020-12-07 10:56

	Reporting						Container) /	
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	2.27	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)

	Sample ID: AGW012	
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	2020-12-23 16:41
PO BOX 83581		Reported:
LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	

Laboratory ID: 1566879-10 Sampled Date/Time: 2020-12-13 09:42

Reporting								(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes		
Environmental Chemistry										
Nitrate/Nitrite Nitrogen	12.4	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)		

	LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	Burndad
	PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
_		Sample ID: AGW013	

Laboratory ID: 1566879-11 Sampled Date/Time: 2020-12-09 11:31

Reporting								(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes		
Environmental Chemistry										
Nitrate/Nitrite Nitrogen	0.53	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)		

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
	Sample ID: AGW014	

Laboratory ID: 1566879-12 Sampled Date/Time: 2020-12-07 15:06

Reporting								(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes		
Environmental Chemistry										
Nitrate/Nitrite Nitrogen	0.24	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)		

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
	Sample ID: AGW015	

Laboratory ID: 1566879-13 Sampled Date/Time: 2020-12-09 10:03

Reporting								(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes		
Environmental Chemistry										
Nitrate/Nitrite Nitrogen	8.96	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)		

LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	2020-12-23 16:41
PO BOX 83581		Reported:
LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	

Laboratory ID: 1566879-14 Sampled Date/Time: 2020-12-08 11:39

Reporting								Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	8.76	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
	Sample ID: AGW017A	

Laboratory ID: 1566879-15 Sampled Date/Time: 2020-12-07 16:14

		Reporting					(Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	0.31	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)

	LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
	PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
I		Sample ID: AGW018	

Laboratory ID: 1566879-16 Sampled Date/Time: 2020-12-08 13:56

		Reporting					(Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	14.1	0.20	mg/L	EPA 353.2	2020-12-22	2020-12-22	JAJ4	(A)

	LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
	PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
L	· · · · · · · · · · · · · · · · · · ·	Sample ID: AGW019	

Laboratory ID: 1566879-17 Sampled Date/Time: 2020-12-08 10:06

		Reporting					(Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	11.9	0.20	mg/L	EPA 353.2	2020-12-23	2020-12-23	jaj4	(A)

LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN Sample ID: AGW020	2020-12-23 16:41
PO BOX 83581		Reported:
LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	

Laboratory ID: 1566879-18 Sampled Date/Time: 2020-12-08 17:02

		Reporting					(Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	18.1	0.20	mg/L	EPA 353.2	2020-12-23	2020-12-23	jaj4	(A)

PO BOX 83581 Reported:		PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
------------------------	--	--	---------------------------------	--------------------------------------

Laboratory ID: 1566879-19 Sampled Date/Time: 2020-12-07 13:39

		Reporting						(Container) /		
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes		
Environmental Chemistry										
Nitrate/Nitrite Nitrogen	41.3	0.80	mg/L	EPA 353.2	2020-12-23	2020-12-23	jaj4	(A)		

	LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/Irrigation Wells	
	PO BOX 83581 LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
I		Sample ID: AGW017B	

Laboratory ID: 1566879-20 Sampled Date/Time: 2020-12-08 16:06

		Reporting					(Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	18.8	0.20	mg/L	EPA 353.2	2020-12-23	2020-12-23	jaj4	(A)

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581	Project: Nitrate Only/Irrigation Wells	Departed
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	Reported: 2020-12-23 16:41
	Sample ID: GWDUP-1	

Laboratory ID: 1566879-21 Sampled Date/Time: 2020-12-09 09:02

		Reporting					(Container) /
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes
Environmental Chemistry								
Nitrate/Nitrite Nitrogen	8.63	0.20	mg/L	EPA 353.2	2020-12-23	2020-12-23	jaj4	(A)

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581	Project: Nitrate Only/Irrigation Wells	Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITTHUHN	2020-12-23 16:41
	Sample ID: GWDUP-2	

Laboratory ID: 1566879-22 Sampled Date/Time: 2020-12-09 14:49

		Reporting									
Analyte	Result	Limit	Units	Method	Prepared	Analyzed	Analyst	Notes			
Environmental Chemistry											
Nitrate/Nitrite Nitrogen	0.52	0.20	mg/L	EPA 353.2	2020-12-23	2020-12-23	jaj4	(A)			

LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported: 2020-12-23 16:41

Environmental Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B008658										
Blank (B008658-BLK1)				Prepared &	Analyzed:	2020-12-22				
Nitrate/Nitrite Nitrogen	<	0.20	mg/L							
LCS (B008658-BS1)				Prepared &	Analyzed:	2020-12-22				
Nitrate/Nitrite Nitrogen	5.35	0.20	mg/L	5.00		107	90-110			
Matrix Spike (B008658-MS1)	Sou	rce: 1566879-0	06	Prepared & Analyzed: 2020-12-22						
Nitrate/Nitrite Nitrogen	4.57	0.20	mg/L	4.00	0.29	107	90-110			
Matrix Spike (B008658-MS2)	Sou	rce: 1566879-	12 Prepared & Analyzed: 2020-12-22			2020-12-22				
Nitrate/Nitrite Nitrogen	4.60	0.20	mg/L	4.00	0.24	109	90-110			
Matrix Spike Dup (B008658-MSD1)	Sou	rce: 1566879-0	06	Prepared &	Analyzed:	2020-12-22				
Nitrate/Nitrite Nitrogen	4.58	0.20	mg/L	4.00	0.29	107	90-110	0.175	10	
Matrix Spike Dup (B008658-MSD2)	Sou	rce: 1566879- [,]	12	Prepared & Analyzed: 2020-12-22						
Nitrate/Nitrite Nitrogen	4.53	0.20	mg/L	4.00	0.24	107	90-110	1.58	10	
Batch B008683										
Blank (B008683-BLK1)				Prepared 8	Analyzed:	2020-12-23				
Nitrate/Nitrite Nitrogen	<	0.20	mg/L							
LCS (B008683-BS1)	S (B008683-BS1)				Analyzed:	2020-12-23				
Nitrate/Nitrite Nitrogen	5.14	0.20	mg/L	5.00		103	90-110			
Matrix Spike (B008683-MS1)	Sou	rce: 1566879-2	21	Prepared 8	Analyzed:	2020-12-23				
Nitrate/Nitrite Nitrogen	12.33	0.20	mg/L	4.00	8.63	92.5	90-110			

LOWER PLATTE SOUTH NRD - 8722	F
PO BOX 83581	
LINCOLN, NE 68501-3581	Project Ma

Project: Nitrate Only/Irrigation Wells

oject Manager: CHRIS WITTHUHN

Reported: 2020-12-23 16:41

Environmental Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B008683										
Matrix Spike (B008683-MS2) Source: 1566879-22			Prepared &	pared & Analyzed: 2020-12-23						
Nitrate/Nitrite Nitrogen	4.61	0.20	mg/L	4.00	0.52	102	90-110			
Matrix Spike (B008683-MS3)	B008683-MS3) Source: 1564954-01 Prepared & A				Analyzed: 2020-12-23					
Nitrate/Nitrite Nitrogen	6.82	0.20	mg/L	4.00	2.89	98.1	90-110			
Matrix Spike Dup (B008683-MSD1)	Sourc	e: 1566879-2	:1	Prepared 8	& Analyzed: 2020-12-23					
Nitrate/Nitrite Nitrogen	12.28	0.20	mg/L	4.00	8.63	91.1	90-110	0.463	10	
Matrix Spike Dup (B008683-MSD2)	Sourc	e: 1566879-2	2	Prepared 8	Analyzed:	2020-12-23	i			
Nitrate/Nitrite Nitrogen	4.61	0.20	mg/L	4.00	0.52	102	90-110	0.130	10	
Matrix Spike Dup (B008683-MSD3) Source: 1564954-01				Prepared 8	Analyzed:	2020-12-23				
Nitrate/Nitrite Nitrogen	6.89	0.20	mg/L	4.00	2.89	100	90-110	1.07	10	

LOWER PLATTE SOUTH NRD - 8722	Project: Nitrate Only/I	Irrigation Wells	
PO BOX 83581			Reported:
LINCOLN, NE 68501-3581	Project Manager: CHRIS WITT	HUHN	2020-12-23 16:41
Certified Analyses included in this Repo	ort		
Method	Analyte	Certifications	

Aqueous Nitrate/Nitrite N	itrogen	TX,FL,UT,OK,IA
Description	Number	Expires
Florida Department of Health	E87918	06/30/2021
lowa Department of Natural Resources	064	05/01/2021
Kansas Department of Health and Environment	E-10402	04/30/2021
State of Nebraska Dept of Health & Human Services	NE-04-05	06/30/2021
Oklahoma Department of Environmental Quality	2019-094	08/31/2021
Texas Commission on Environmental Quality	T104704416-20-14	07/31/2021
State of Utah Department of Health	NE000012020-10	07/31/2021
State of Washington Department of Ecology	C912	06/07/2020
	Description Florida Department of Health Iowa Department of Natural Resources Kansas Department of Health and Environment State of Nebraska Dept of Health & Human Services Oklahoma Department of Environmental Quality Texas Commission on Environmental Quality State of Utah Department of Health	DescriptionNumberFlorida Department of HealthE87918Iowa Department of Natural Resources064Kansas Department of Health and EnvironmentE-10402State of Nebraska Dept of Health & Human ServicesNE-04-05Oklahoma Department of Environmental Quality2019-094Texas Commission on Environmental QualityT104704416-20-14State of Utah Department of HealthNE000012020-10

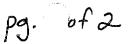
LOWER PLATTE SOUTH NRD - 8722 PO BOX 83581 LINCOLN, NE 68501-3581 Project: Nitrate Only/Irrigation Wells

Project Manager: CHRIS WITTHUHN

Reported: 2020-12-23 16:41

Notes and Definitions

< Less than reporting limit


NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

EPA 524.2, EPA 624, EPA 8260, OA-1, TCLP VOC, GRO, and all microbiological analyses are conducted in the facility located at 13606 B Street, Omaha, NE 68144. All other analyses are conducted in the main facility located at 13611 B Street, Omaha, NE 68144.

W6777566079 · /

Lower Platte South Natural Resources District Vadose Zone Sampling Program Chain-of-Custody Form

Report & Bill To: Dick Ehrman

Account #: 8722

	1.0.
1	Linco
\sim	n Phor
Relinquished By (Signature):	
Received By (Signature): Sydney S.	Corcose
Relinquished By (Signature): SMAMM S. Received By (Signature):	Corcer 20
Relinquished By (Signature)	4

Received By (Signature):

Lower Platte South NRD P.O. Box 83581 Lincoln, NE 68501-3581 Phone: (402) 476-2729 回読回 156687 した。その日本の目的 日本の目的 Sticker #: 1

Date/Time: 12/15/2020 10:10Am Date/Time: 13/15/2020 10:10AM

Date/Time: 17/15/20 1030AM Date/Time: 12/15/20 1030Am

Date/Time:<u>/J/16/20 /0:</u>50 am Date/Time:

				Tests Requ	uested	Lab #/	Order #	
Sample #	Date	Time	Matrix	Nitrate-N		(Intern	al Use)	Notes
, RGW001	12-10-2020	1215	Groundwater	X				
RGW002	12-12-2020	1538	Groundwater	Х				
RGW003	12-11-2020	1444	Groundwater	X				
			Groundwater	— X				
RGW005	12-12-2020	0947	Groundwater	ja 54 (. X asta a)				
RGW006	12-11-2020	_1113	Groundwater	X				
RGW007	12-11-2020	1611	Groundwater	X				
RGW008	12-12-2020	154	Groundwater	Х				
RGW009 B	12-10-2020	0859	Groundwater	X				
RGW010			Groundwater	X				
AGW011	12-7-2020	056	Groundwater	X				
AGW012	12-13-2020	0942	Groundwater	Х				
AGW013	12-9-2020	1131	Groundwater	X (
AGW014	12-7-2020	1506	Groundwater	X				
AGW015	12-9-2020	003	Groundwater	X				

1 (DD Page 30 of 31 2.0°Att 12/10/19

LPSNRD Vadose Zone Sampling Program Chain-of Custody

p. 2 of 2

	7	<u> </u>	T	ļ		_		
AGW016	12-8-2020	1139	Groundwater	X.			<u> </u>	
AGW017 A	12-7-2020	1614	Groundwater	X	<u> </u>		_	
AGW018	12-8-2020	1356	Groundwater					
AGW019	12-8-2020	1006	Groundwater					
AGW020	12-8-2020	_1702_	Groundwater	X			<u> </u>	
AGW021	12-7-2020	1339		X	-			
AGWOITB	2-8-2020		Groundwater	<u> </u>				
GWDUP-1	12-9-2020	1606	Grandwiter	$\underline{\Lambda}$				
GW DUP-2	10-1-2020	0902	Grandwater	<u> </u>	<u> </u>			
	12-9-2020	1449	Grandwinter	X			$G(x_i) \in G(x_i)^{-1}$	
				<u> </u>	<u> </u>			
a da se trans a se de la contre de la contre		<u> </u>	HOOKGENPE					
			1566	1879	Falk C			
		— <u>Ci</u>	ົ້າດັ່ງ 🖫			빌		
	<u>la da persette da p</u>		Sticker	#· 2			i in migilipherer a	ana any amin'ny soratra dia mampina dia
				1 • £	L=1 4 ; ; ;	R —		
					_	<u>Jean</u>		na an a
								<u>a na ani ang akatalon Kanganan Proposi</u> gah T
					2013			
						<u> </u>		<u>. 41 - 2018년 1월 1943년 1947년</u> - 23일
				<u> </u>		<u></u>		
			all states			n in	un forfan de la c	
						<u>A (Art) (Art)</u>	<u>1898 (617) (65</u>)	
						<u></u>		
			·			<u>ang (1866)</u>		
								· · · · · · · · · · · · · · · · · · ·
			<u> </u>			<u>neta estada</u>		
			an a					
			<u>na Alinta (na ang</u> a		lateral al terral a constante de la			

Page 31 of 31

This page intentionally left blank

Appendix D

Shallow Soil Sampling Results Tables

			Site ASS011				
Sample Location #	1	2	3	4	5	Aug N	Ave N
Land use	Range, Pasture, Grass	Avg. N	Avg N.				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac
0-3 ft	4	4	4	4	7	4	13
3-6 ft	4	4	4	4	4	4	11
6-9 ft	43	4	4	4	4	12	35
9-12 ft	40	4	4	4	4	11	32
12-15 ft	7	4	4	4	4	4	13
Root Zone Avg. (0-3, 3-6 ft)	4	4	4	4	5	4	71
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	30	4	4	4	4	9	240
Avg. N for all depths	19	4	4	4	4	7	-
Avg. N lb/ac	292	54	54	54	65	-	104

			Site ASS012				
Sample Location #	1	2	3	4	5	Avg. N	Avg N.
Land use	Dryland Corn	Avg. N	Avg N.				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac
0-3 ft	7	7	18	7	7	9	28
3-6 ft	4	4	11	4	4	5	15
6-9 ft	7	7	11	7	11	9	26
9-12 ft	7	7	14	14	7	10	30
12-15 ft	7	11	14	7	4	9	26
Root Zone Avg. (0-3, 3-6 ft)	5	5	14	5	5	7	130
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	7	8	13	10	7	9	247
Avg. N for all depths	6	7	14	8	6	8	-
Avg. N lb/ac	97	108	206	119	97	-	126

			Site ASS014				
Sample Location #	1	2	3	4	5	Aux N	A N
Land use	Dryland Soybeans	Avg. N	Avg N.				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac
0-3 ft	4	4	4	4	7	4	13
3-6 ft	4	4	4	4	4	4	11
6-9 ft	4	4	4	4	4	4	11
9-12 ft	4	4	4	4	4	4	11
12-15 ft	4	4	4	4	4	4	11
Root Zone Avg. (0-3, 3-6 ft)	4	4	4	4	5	4	71
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	4	4	4	4	4	4	97
Avg. N for all depths	4	4	4	4	4	4	-
Avg. N lb/ac	54	54	54	54	65	-	56

			Site ASS015				
Sample Location #	1	2	3	4	5	Aug N	Aug N
Land use	Dryland Corn	Avg. N	Avg N.				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac
0-3 ft	11	4	7	11	14	9	28
3-6 ft	4	4	4	4	4	4	11
6-9 ft	4	7	4	4	4	4	13
9-12 ft	7	4	7	7	4	6	17
12-15 ft	7	4	7	7	4	6	17
Root Zone Avg. (0-3, 3-6 ft)	7	4	5	7	9	6	117
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	6	5	6	6	4	5	143
Avg. N for all depths	6	4	6	6	6	6	-
Avg. N lb/ac	97	65	87	97	87	-	87

			Site ASS016				
Sample Location #	1	2	3	4	5	Avg. N	Arre N
Land use	Range, Pasture, Grass	Avg. N	Avg N.				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac
0-3 ft	4	7	7	7	11	7	22
3-6 ft	4	7	4	7	4	5	15
6-9 ft	4	4	4	7	4	4	13
9-12 ft	4	7	4	4	4	4	13
12-15 ft	4	4	7	4	4	4	13
Root Zone Avg. (0-3, 3-6 ft)	4	7	5	7	7	6	110
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	4	5	5	5	4	4	117
Avg. N for all depths	4	6	5	6	5	5	-
Avg. N lb/ac	54	87	76	87	76	-	76

			Site ASS017				
Sample Location #	1	2	3	4	5	Ave N	Aug N
Land use	Dryland Soybeans	Dryland Soybeans	Irrigated Corn	Irrigated Corn	Irrigated Corn	Avg. N	Avg N.
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac
0-3 ft	4	4	4	4	4	4	11
3-6 ft	4	4	4	4	4	4	11
6-9 ft	4	4	4	4	7	4	13
9-12 ft	4	4	4	4	11	5	15
12-15 ft	4	4	4	-	11	6	17
Root Zone Avg. (0-3, 3-6 ft)	4	4	4	4	4	4	65
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	4	4	4	4	10	5	134
Avg. N for all depths	4	4	4	4	7	4	-
Avg. N lb/ac	54	54	55	43	108	-	63

			Site ASS019				
Sample Location #	1	2	3	4	5	Aux N	A N
Land use	Dryland Soybeans	Avg. N	Avg N.				
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac
0-3 ft	4	4	4	7	7	5	15
3-6 ft	4	4	4	4	4	4	11
6-9 ft	4	4	4	4	4	4	11
9-12 ft	4	4	4	4	4	4	11
12-15 ft	7	4	7	7	4	6	17
Root Zone Avg. (0-3, 3-6 ft)	4	4	4	5	5	4	78
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	5	4	5	5	4	4	117
Avg. N for all depths	4	4	4	5	4	4	-
Avg. N lb/ac	65	54	65	76	65	-	65

	Site ASS020								
Sample Location #	1	2	3	4	5	Aug N	Ave N		
Land use	Range, Pasture, Grass	Avg. N	Avg N.						
Units	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac		
0-3 ft	4	4	7	7	4	5	15		
3-6 ft	4	4	11	11	4	6	19		
6-9 ft	4	4	11	7	7	6	19		
9-12 ft	4	4	11	7	7	6	19		
12-15 ft	4	4	11	7	7	6	19		
Root Zone Avg. (0-3, 3-6 ft)	4	4	9	9	4	6	104		
Below Root Zone Avg. (6-9, 9-12, 12-15 ft)	4	4	11	7	7	6	175		
Avg. N for all depths	4	4	10	8	6	6	-		
Avg. N lb/ac	54	54	152	119	87	-	93		

This page intentionally left blank

Appendix E

Deep Soil Sampling Results Tables

	ADS011	ADS012	ADS013	ADS014	ADS015	ADS016	ADS017A
	Range Pasture Grass	Corn	Range Pasture Grass	Soybeans	Corn	Range Pasture Grass	Soybeans
Interval (ft)	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft
0-5	7	7	7	11	18	11	11
5-10	4	11	4	7	18	4	7
10-15	4	7	4	7	7	4	7
15-20	4	4	4	-	4	4	7
20-25	4	7	4	-	4	4	-
25-30	4	14	4	-	4	7	-
30-35	-	-	4	-	11	-	-
35-40	-	-	-	-	-	-	-
40-45	-	-	-	-	-	-	-
45-50	-	-	-	-	-	-	-
Average	4	8	4	8	9	5	8
Minimum	4	4	4	7	4	4	7
Maximum	7	14	7	11	18	11	11
Total Lb/Ac	126	253	144	126	325	162	162
Quartile 2	3.61	7.22	3.61	7.22	3.61	3.61	7.22
Quartile 3	3.61	9.92	3.61	9.02	14.43	6.31	8.12

	ADS017B	ADS018	ADS019	ADS020	ADS021
	Irrigated Corn	Range Pasture Grass	Soybeans	Range Pasture Grass	Range Pasture Grass
Interval (ft)	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft	lb/ac-ft
0-5	18	11	11	14	7
5-10	11	4	11	4	4
10-15	18	7	7	4	83
15-20	7	7	7	4	58
20-25	14	7	7	7	18
25-30	-	7	11	18	7
30-35	-	4	14	-	14
35-40	-	7	14	-	-
40-45	-	14	14	-	-
45-50	-	-	14	-	-
Average	14	8	11	8	27
Minimum	7	4	7	4	4
Maximum	18	14	14	18	83
Total Lb/Ac	343	343	559	253	956
Quartile 2	10.82	7.22	8.12	3.61	7.22
Quartile 3	18.04	7.22	14.43	12.63	37.88

This page intentionally left blank